Purpose: This study aims to expose the toxicity of fentanyl analogs and their metabolites by measuring the agonistic activity of these compounds on opioid receptors.
Methods: The agonistic activity of fentanyl, four analogs of fentanyl (acetylfentanyl, butyrylfentanyl, tetrahydrofuranylfentanyl, and furanylfentanyl), and their metabolites were evaluated using a cell-based assay system, which measured the cellular cAMP level after the reaction of a test compound with cells expressing opioid receptor.
Results: Fentanyl and its four analogs showed agonistic activity on μ-opioid receptor at < 10 nM, whereas these compounds were inactive at δ- and κ-opioid receptors even at 100 nM. Similarly, no metabolites showed agonistic activity on δ- and κ-opioid receptors. Meanwhile, several metabolites were active at μ-opioid receptor. β-Hydroxy metabolites exhibited strong activity nearly equivalent to those of the parent drugs. Some 4'-hydroxy metabolites and N-acyl group-hydroxylated metabolites were still active; however, their activity drastically decreased compared to the parent drugs.
Conclusions: Most of the metabolic reactions drastically diminish the agonistic activity of fentanyl analogs; exceptionally, β-hydroxylation maintains the activity at a level nearly equal to that of the parent drugs. However, β-hydroxy metabolites should contribute less to the poisoning caused by the ingestion of fentanyl analogs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11419-021-00602-w | DOI Listing |
Support Care Cancer
January 2025
Department of Dentistry and Oral Health, Faculty of Health, Aarhus University, Aarhus, Denmark.
Purpose: This systematic review aimed to assess the updated literature for the prevention of salivary gland hypofunction and xerostomia induced by non-surgical cancer therapies.
Methods: Electronic databases of MEDLINE/PubMed, EMBASE, and Cochrane Library were searched for randomized controlled trials (RCT) that investigated interventions to prevent salivary gland hypofunction and/or xerostomia. Literature search began from the 2010 systematic review publications from the Multinational Association of Supportive Care in Cancer/International Society of Oral Oncology (MASCC/ISOO) up to February 2024.
RSC Med Chem
December 2024
Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara 44121 Ferrara Italy
The N/OFQ-NOP receptor is a fascinating peptidergic system with the potential to be exploited for the development of analgesic drugs devoid of side effects associated with classical opioid signalling modulation. To date, up to four X-ray and cryo-EM structures of the NOP receptor in complex with the endogenous peptide agonist N/OFQ and three small molecule antagonists have been solved and released. Despite the available structural information, the details of selective small molecule agonist binding to the NOP receptor in the active state remain elusive.
View Article and Find Full Text PDFCell Discov
January 2025
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
BMJ Open
January 2025
Cardiologie, Trousseau Hospital, Chambray-les-Tours, France.
Introduction: Several cardiovascular outcome trials have been conducted to assess the cardiovascular safety and efficacy of glucagon-like peptide-1 receptor agonists (GLP1-RAs) on cardiorenal outcomes in patients with type-2 diabetes (T2D). However, the strict requirements of randomised controlled trials to avoid most confounding factors are at the expense of external validity. Using national real-world data, we aimed to evaluate the effectiveness of GLP-1RAs in association with metformin especially on cardiovascular events, hospitalisation for heart failure and all-cause death in comparison with other diabetes treatment schemes using dipeptidyl peptidase IV inhibitors, sulfonylureas/glinides or insulin also associated with metformin.
View Article and Find Full Text PDFACS Nano
January 2025
National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China.
Cancer vaccines utilizing nanoparticle (NP) structures that integrate antigens and adjuvants to enhance delivery and stimulate immune responses are emerging as a promising avenue in cancer immunotherapy. However, the development of cancer vaccines has been significantly hindered by the low immunogenicity of tumor antigens. To address this challenge, substantial efforts have been made in developing innovative adjuvants to elicit effective immune responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!