Alternative matrices in forensic toxicology: a critical review.

Forensic Toxicol

Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo 14040-901, Brazil.

Published: January 2022

Purpose: The use of alternative matrices in toxicological analyses has been on the rise in clinical and forensic settings. Specimens alternative to blood and urine are useful in providing additional information regarding drug exposure and analytical benefits. The goal of this paper is to present a critical review on the most recent literature regarding the application of six common alternative matrices, i.e., oral fluid, hair, sweat, meconium, breast milk and vitreous humor in forensic toxicology.

Methods: The recent literature have been searched and reviewed for the characteristics, advantages and limitations of oral fluid, hair, sweat, meconium, breast milk and vitreous humor and its applications in the analysis of traditional drugs of abuse and novel psychoactive substances (NPS).

Results: This paper outlines the properties of six biological matrices that have been used in forensic analyses, as alternatives to whole blood and urine specimens. Each of this matrix has benefits in regards to sampling, extraction, detection window, typical drug levels and other aspects. However, theses matrices have also limitations such as limited incorporation of drugs (according to physical-chemical properties), impossibility to correlate the concentrations for effects, low levels of xenobiotics and ultimately the need for more sensitive analysis. For more traditional drugs of abuse (e.g., cocaine and amphetamines), there are already data available on the detection in alternative matrices. However, data on the determination of emerging drugs such as the NPS in alternative biological matrices are more limited.

Conclusions: Alternative biological fluids are important specimens in forensic toxicology. These matrices have been increasingly reported over the years, and this dynamic will probably continue in the future, especially considering their inherent advantages and the possibility to be used when blood or urine are unavailable. However, one should be aware that these matrices have limitations and particular properties, and the findings obtained from the analysis of these specimens may vary according to the type of matrix. As a potential perspective in forensic toxicology, the topic of alternative matrices will be continuously explored, especially emphasizing NPS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715501PMC
http://dx.doi.org/10.1007/s11419-021-00596-5DOI Listing

Publication Analysis

Top Keywords

alternative matrices
20
blood urine
12
matrices
9
alternative
8
matrices forensic
8
forensic toxicology
8
critical review
8
oral fluid
8
fluid hair
8
hair sweat
8

Similar Publications

Acellular Dermal Matrices in Reconstructive Pediatric Complex Lower Limb Trauma: An Observational Study.

J Trauma Nurs

January 2025

Author Affiliations: St Andrew's Anglia Ruskin (StAAR) Research Group, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK (Dr Adegboye); Division of Plastic and Reconstructive Surgery, Red Cross War Memorial Children's Hospital; and Division of Plastic & Reconstructive Surgery, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa (Dr Pillay and Prof Adams).

Background: Contemporary research has shown that acellular dermal matrices can benefit adult lower extremity traumatic injuries; however, its use in children has not been explored.

Objective: This study aims to explore the use of acellular dermal matrices in pediatric complex lower extremity trauma.

Methods: This single-center retrospective observational cohort study of children with complex lower extremity trauma treated with Pelnac™, commercial acellular dermal matrices, was conducted at a tertiary hospital in South Africa from 2010 to 2017.

View Article and Find Full Text PDF

Effects of UVC doses on the removal of antimicrobial resistance elements from secondary treated sewage.

Environ Sci Pollut Res Int

January 2025

Programa de Pós-Graduação Em Saneamento, Meio Ambiente E Recursos Hídricos, Departamento de Engenharia Sanitária E Ambiental, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.

Wastewater treatment plants (WWTPs) currently face major challenges toward the removal of microcontaminants and/or microbial matrices and consequently play an important role in the potential dissemination of biological resistance in freshwater. The ultraviolet (UV) system is a tertiary treatment strategy increasingly applied worldwide, although many studies have shown that disinfected effluent can still contain antibiotic-resistant bacteria and resistance genes. Therefore, to better understand the effects of UV radiation doses on the removal of all resistance elements (antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes), the present study was designed using a pilot-scale photoreactor.

View Article and Find Full Text PDF

Dealing with radioactive waste, particularly from various industrial processes, poses significant challenges. This paper explores the use of lithium aluminate borate (Li-Al-B) glass matrix as an alternative method for immobilizing radioactive waste, focusing specifically on waste generated in tin smelting industries, known as tin slag. The study primarily concentrates on transforming tin slag, a byproduct abundant in Natural Occurring Radioactive Material (NORM), into a stable and safe form for disposal.

View Article and Find Full Text PDF

The increasing reliance on electronic devices has created a pressing demand for high-performance and sustainable electromagnetic interference shielding materials. While conventional materials, such as metals and carbon-based composites, offer excellent shielding capabilities, they are hindered by high costs, environmental concerns, and limitations in scalability. Polysaccharide-based materials, including cellulose, chitosan, and alginate, represent a promising alternative due to their biodegradability, renewability, and versatility.

View Article and Find Full Text PDF

Development of Novel Oral Delivery Systems Using Additive Manufacturing Technologies to Overcome Biopharmaceutical Challenges for Future Targeted Drug Delivery.

Pharmaceutics

December 2024

Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Strasse 3, 17489 Greifswald, Germany.

The development of targeted drug delivery systems for active pharmaceutical ingredients with narrow absorption windows is crucial for improving their bioavailability. This study proposes a novel 3D-printed expandable drug delivery system designed to precisely administer drugs to the upper small intestine, where absorption is most efficient. The aim was to design, prototype, and evaluate the system's functionality for organ retention and targeted drug release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!