Background: Oxidative stress is known to impair cellular functions and, therefore, plays a significant role in the pathophysiology of various diseases, including diabetes. The persistently elevated glucose levels may cause enhanced mitochondrial reactive oxygen species generation, which in turn can damage the pancreatic β-cells. In this study, we have investigated the effect of vanillic acid on preventing HO-induced β-cells death and retaining its insulin secretion potentiating effect in the presence of HO.

Methods: The insulin secretion from the BRIN-BD11 cells was quantified using ELISA-based assays. The viability of the cells was assessed by estimated by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) colorimetric assay and DAPI staining. The expression levels of apoptotic and antioxidant proteins were estimated by western blot experiments.

Results: Vanillic acid protected pancreatic β-cells viability and function under the HO oxidative stress condition. The Erk1/2 activation appears to play an important role in vanillic acid potentiated insulin secretion and protection of the β-cells in the presence of HO. Vanillic acid pretreated cells exhibited enhanced expression of antioxidant enzymes such as catalase and SOD-2 and reduced the expression of proapoptotic markers such as BAX and BAD. In addition, it also enhanced the expression of oxidative stress-sensitive transcription factor Nrf-2 and cell survival protein Akt.

Conclusion: The present study shows that vanillic acid potentiates insulin secretion and protects pancreatic β-cells from HO-induced oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-022-08046-0DOI Listing

Publication Analysis

Top Keywords

vanillic acid
24
insulin secretion
20
pancreatic β-cells
16
oxidative stress
16
acid potentiates
8
potentiates insulin
8
ho-induced oxidative
8
enhanced expression
8
vanillic
6
β-cells
6

Similar Publications

Thermal modification is an environmentally friendly process that does not utilize chemical agents to enhance the stability and durability of wood. The use of thermally modified wood results in a significantly extended lifespan compared with untreated wood, with minimal maintenance requirements, thereby reducing the carbon footprint. This study examines the impact of varying modification temperatures (160, 180, and 210 °C) on the lignin of spruce wood using the ThermoWood process and following the accelerated aging of thermally modified wood.

View Article and Find Full Text PDF

Compounds Involved in the Invasive Characteristics of .

Molecules

January 2025

Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan.

L. is native to tropical America and has naturalized in many other tropical, subtropical, and temperate regions in Asia, Africa, Oceania, North and South America, and Europe. infests diverse habitats with a wide range of climatic factors, and its population increases aggressively as one of the world's 100 worst invasive alien species.

View Article and Find Full Text PDF

Honey contains natural biologically active compounds, and its preventive and healing properties are primarily linked to its antioxidant activity. The antioxidant properties of honey can be related to the botanical origin and content of phenolic compounds. We tested 84 honey samples from Poland, representing eight honey varieties: acacia, phacelia, buckwheat, linden, rapeseed, heather, goldenrod, and honeydew.

View Article and Find Full Text PDF

Metabolic syndrome is a clustering of metabolic abnormalities and anthropometric factors that increase the risk of cardiovascular disease and type 2 diabetes mellitus. As the search for effective treatments intensifies, attention has turned towards natural substances with potential medicinal benefits. Among them, vanillic acid, a phenolic acid present in many plants, has attracted some attention due to its wide range of biological activities.

View Article and Find Full Text PDF

Therapeutic Potential of Vanillic Acid in Ulcerative Colitis Through Microbiota and Macrophage Modulation.

Mol Nutr Food Res

January 2025

2nd Abdominal Surgery Department, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, People's Republic of China.

This study investigated the protective effects of the dietary polyphenol vanillic acid (VA) on dextran sulfate sodium-induced acute ulcerative colitis (UC) in mice, focusing on its impact on the gut microbiota and inflammatory responses. VA was supplemented following dextran sulfate sodium administration, and key indicators, including body weight, disease activity index, colon length, spleen index, and inflammatory markers, were assessed. VA supplementation significantly alleviated UC symptoms, preserved intestinal barrier integrity, and reduced pro-inflammatory cytokine levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!