High-entropy oxides (HEOs) have a large tuning space in composition and crystal structures, offering the possibility for improved material properties in applications including catalysis, energy storage, and thermal barrier coatings. Understanding the nucleation and growth mechanisms of HEOs at the atomic scale is critical to the design of their structure and functions but remains challenging. Herein, we visualize the entire formation process of a high-entropy fluorite oxide from a polymeric precursor using atomic resolution gas-phase scanning transmission electron microscopy. The results show a four-stage formation mechanism, including nucleation during the oxidation of a polymeric precursor below 400 °C, diffusive grain growth below 900 °C, liquid-phase-assisted compositional homogenization under a "state of supercooling" at 900 °C, and entropy-driven recrystallization and stabilization at higher temperatures. The atomistic insights are critical for the rational synthesis of HEOs with controlled grain sizes and morphologies and thus the related properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.2c09760 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!