RNA polymerase II (RNAPII) transcribes small nuclear RNA (snRNA) genes in close proximity to Cajal bodies, subnuclear compartments that depend on the SUMO isopeptidase USPL1 for their assembly. We show here that overexpression of USPL1 as well as of another nuclear SUMO isopeptidase, SENP6, alters snRNA 3'-end cleavage, a process carried out by the Integrator complex. Beyond its role in snRNA biogenesis, this complex is responsible for regulating the expression of different RNAPII transcripts. While several subunits of the complex are SUMO conjugation substrates, we found that the SUMOylation of the INTS11 subunit is regulated by USPL1 and SENP6. We defined Lys381, Lys462 and Lys475 as bona fide SUMO attachment sites on INTS11 and observed that SUMOylation of this protein modulates its subcellular localization and is required for Integrator activity. Moreover, while an INTS11 SUMOylation-deficient mutant is still capable of interacting with INTS4 and INTS9, its interaction with other subunits of the complex is affected. These findings point to a regulatory role for SUMO conjugation on Integrator activity and suggest the involvement of INTS11 SUMOylation in the assembly of the complex. Furthermore, this work adds Integrator-dependent RNA processing to the growing list of cellular processes regulated by SUMO conjugation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9757034 | PMC |
http://dx.doi.org/10.1093/nar/gkac1055 | DOI Listing |
Cell Death Differ
January 2025
Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
The importance of SUMOylation in tumorigenesis has received increasing attention, and research on therapeutic agents targeting this pathway has progressed. However, the potential function of SUMOylation during hepatocellular carcinoma (HCC) progression and the underlying molecular mechanisms remain unclear. Here, we identified that SUMO-Specific Peptidase 3 (SENP3) was upregulated in HCC tissues and correlated with a poor prognosis.
View Article and Find Full Text PDFClin Genet
January 2025
Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Arthrogryposis multiplex congenita (AMC) is a heterogeneous disorder associated with 1/3000 to 1/5000 live births. We report a consanguineous family with multiple affected members with AMC and identified a recessive mutation in the highly conserved splice donor site, resulting in the mis-splicing of the affected exons. SENP7 is a deSUMOylase that is critical for sarcomere assembly and skeletal muscle contraction by regulating the transcriptional program in the skeletal muscle.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Gynecology, Dalian Women and Children's Medical Center (Group), Dalian Medical University, Dalian 116033, Liaoning, China. Electronic address:
Background: Cervical cancer is a prevalent form of cancer in women, and the inhibition of ferroptosis has been shown to promote the progression of cervical cancer tumours. This study aimed to investigate the role of PIN1 in regulating ferroptosis in cervical cancer, focusing on its ability to modulate the cGAS-STING pathway and the potential involvement of USP34 as an upstream regulator of PIN1.
Methods: PIN1-overexpressing and PIN1-knockdown cell lines were constructed.
Nat Commun
January 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
Potyvirids are the largest group of plant RNA viruses. Pelota, a core component of RNA quality controls (RQC), promotes the degradation of potyvirids' genomic RNA by recognizing a specific GA motif. Here we demonstrate that the viral RNA-dependent RNA polymerase, NIb, acts as a SUMOylation decoy to effectively reduce Pelota SUMOylation by competing with SCE1 to inhibit Pelota-mediated RQC.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China.
Human ANP32A/B (huANP32A/B) poorly support the polymerase activity of avian influenza viruses (AIVs), thereby limiting interspecies transmission of AIVs from birds to humans. The SUMO-interacting motif (SIM) within NS2 promotes the adaptation of AIV polymerase to huANP32A/B via a yet undisclosed mechanism. Here we show that huANP32A/B are SUMOylated by the E3 SUMO ligase PIAS2α, and deSUMOylated by SENP1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!