The Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network originated over 20 years ago to foster research to optimize the care of critically ill infants and children. Over this period, PALISI has seen two major evolutions: formalization of our network infrastructure and a broadening of our clinical research focus. First, the network is unique in that its activities and meetings are funded by subscriptions from members who now comprise a multidisciplinary group of investigators from over 90 PICUs all over the United States (US) and Canada, with collaborations across the globe. In 2020, the network converted into a standalone, nonprofit organizational structure (501c3), making the PALISI Network formally independent of academic and clinical institutions or professional societies. Such an approach allows us to invest in infrastructure and future initiatives with broader opportunities for fund raising. Second, our research investigations have expanded beyond the original focus on sepsis and acute lung injury, to incorporate the whole field of pediatric critical care, for example, efficient liberation from mechanical ventilator support, prudent use of blood products, improved safety of intubation practices, optimal sedation practices and glucose control, and pandemic research on influenza and COVID-19. Our network approach in each field follows, where necessary, the full spectrum of clinical and translational research, including: immunobiology studies for understanding basic pathologic mechanisms; surveys to explore contemporary clinical practice; consensus conferences to establish agreement about literature evidence; observational prevalence and incidence studies to measure scale of a clinical issue or question; case control studies as preliminary best evidence for design of definitive prospective studies; and, randomized controlled trials for informing clinical care. As a research network, PALISI and its related subgroups have published over 350 peer-reviewed publications from 2002 through September 2022.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747245 | PMC |
http://dx.doi.org/10.1097/PCC.0000000000003100 | DOI Listing |
Eur Clin Respir J
January 2025
Department of Cardiothoracic Anesthesia and Intensive Care, The Heart Centre, University Hospital of Copenhagen, Denmark.
E-cigarette or vaping product use-associated lung injury (EVALI) is a potentially severe acute interstitial lung disease primarily observed in the United States, with sporadic cases reported in Europe. EVALI, though rare, could be susceptible to under-diagnosis due to limited awareness and diagnostic suspicion. We present a case of a 19-year-old male in Denmark diagnosed with severe EVALI.
View Article and Find Full Text PDFJFMS Open Rep
January 2025
NEIKER-BRTA (Instituto Vasco de Investigación y Desarrollo Agrario - Basque Research and Technology Alliance), Derio, Bizkaia, Spain.
Case Summary: is a globally distributed apicomplexan protozoan infecting all warm-blooded animals. Cats are the definitive host, susceptible to clinical disease. In Spain, studies have shown the widespread presence of IgG antibodies in cats but there are no published data on clinical toxoplasmosis in cats from Spain.
View Article and Find Full Text PDFFront Transplant
December 2024
Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of CHROMETA, KU Leuven, Leuven, Belgium.
Long-term survival after lung transplantation is limited due to chronic lung allograft dysfunction (CLAD), which encompasses two main phenotypes: bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS). Donor-derived cell-free DNA (dd-cfDNA) is a biomarker for (sub)clinical allograft injury and could be a tool for monitoring of lung allograft health across the (pre)clinical spectrum of CLAD. In this proof-of-concept study, we therefore assessed post-transplant plasma dd-cfDNA levels in 20 CLAD patients (11 BOS and 9 RAS) at three consecutive time points free from concurrent infection or acute rejection, during stable condition, preclinical CLAD, and established CLAD ( = 3 × 20 samples).
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19), caused by infection with the enveloped RNA betacoronavirus, SARS-CoV-2, led to a global pandemic involving over 7 million deaths. Macrophage inflammatory responses impact COVID-19 severity; however, it is unclear whether macrophages are infected by SARS-CoV-2. We sought to identify mechanisms regulating macrophage expression of ACE2, the primary receptor for SARS-CoV-2, and to determine if macrophages are susceptible to productive infection.
View Article and Find Full Text PDFDisorders in pulmonary vascular integrity are a prominent feature in many lung diseases. Paracrine signaling is highly enriched in the lung and plays a crucial role in regulating vascular homeostasis. However, the specific local cell-cell crosstalk signals that maintain pulmonary microvascular stability in adult animals and humans remain largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!