Streptococcosis is one of the major threats to Nile tilapia (Oreochromis niloticus) in most regions of the world. Recently, Enterococcus faecalis has been widely reported to be involved in streptococcosis in O. niloticus in Asia and Africa. This study aimed to isolate beneficial marine bacteria to evaluate their effects on growth, hematological parameters, nonspecific immunity, the gut bacteriome, and streptococcosis prevention efficacy in . A total of 36 marine soil bacteria were isolated, and screening was conducted to determine their antibacterial activities against fish pathogens. Two antagonistic bacteria were identified based on 16S rRNA gene sequencing, Bacillus haynesii CD223 and Advenella mimigardefordensis SM421. These bacteria were incorporated into fish feed and fed to for 90 days. The application of these strains via incorporation into fish feed significantly promoted growth, improved hematological parameters and immunoglobulin M (IgM) levels, modulated the gut bacteriome by reducing the load of pathogenic spp., and developed disease prevention efficacy in . Furthermore, assays revealed that the inclusion of extracellular products (ECPs) (at 250 μg mL) of CD223 and SM421 with feed significantly enhanced the rate of survival (100%) of from streptococcosis compared to the controls (only 30%). The ECPs of these bacteria also prevented 90 to 100% of fish from developing streptococcosis. These strains could be promising for safe use in farming to prevent and control the emergence of streptococcosis caused by E. faecalis. Nile tilapia () is one of the most economically important cultured fish species throughout the world. Streptococcosis is a significant threat to global Nile tilapia farming. Enterococcus faecalis has recently emerged as an important pathogen of streptococcosis in Asia and Africa. The application of antibiotics and probiotics and vaccination are the major ways to combat streptococcosis. However, the extensive use of antibiotics leads to the development of antibiotic resistance in pathogenic as well as environmental bacteria, which is a great threat to public health. There is no study on preventing streptococcosis caused by E. faecalis using beneficial bacteria. For the first time, the present study demonstrated that two marine bacteria, Bacillus haynesii strain CD223 and Advenella mimigardefordensis strain SM421, have great potential for controlling streptococcosis in Nile tilapia. These bacteria also enhanced the growth, improved hematological parameters and IgM levels, and positively modulated the gut bacteriome of Nile tilapia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769507PMC
http://dx.doi.org/10.1128/spectrum.02542-22DOI Listing

Publication Analysis

Top Keywords

nile tilapia
24
gut bacteriome
16
bacillus haynesii
12
advenella mimigardefordensis
12
hematological parameters
12
streptococcosis
11
bacteria
10
bacteriome nile
8
bacteria bacillus
8
enterococcus faecalis
8

Similar Publications

IL-21 signaling promotes IgM B cell proliferation and antibody production via JAK/STAT3 and AKT pathways in early vertebrates.

Dev Comp Immunol

January 2025

Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou, 510631, China. Electronic address:

IL-21 is a type I cytokine that is produced by activated CD4 T cells and has a significant impact on the growth, survival, and functional activation of B lymphocytes. While IL-21 has been identified in several teleost fish species, its function and associated mechanisms focus on teleost fish B cells remain largely unknown. In this study, we aimed to investigate the effects of IL-21 (OnIL-21) on IgM B cells from Nile tilapia (Oreochromis niloticus), as well as the intracellular signaling transduction pathway involved.

View Article and Find Full Text PDF

Developmental basis of natural tooth shape variation in cichlid fishes.

Naturwissenschaften

January 2025

Institute of Bioengineering and Biosciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.

While most dentate non-mammalian vertebrates possess simple conical teeth, some demonstrate complex tooth shapes. Lake Malawi cichlid fishes are an extreme example of this, exhibiting a myriad of tooth shapes driven by an ecologically derived rapid evolution of closely related but distinct species. Tooth shape in mammals is generally considered to be established by signaling centers called primary and secondary enamel knots, which are not believed to be present in non-mammalian vertebrates.

View Article and Find Full Text PDF

is a major causative agent of streptococcosis in Nile tilapia () and understanding its etiology is important to ensure the sustainable development of global tilapia farming. Our research group recently observed contrasting disease patterns in animals infected with two different serotypes (Ib and III). To better understand the basis for these divergent responses, we analyzed the brain transcriptome of Nile tilapia following bacterial exposure.

View Article and Find Full Text PDF

The study, herein, investigated the effects of the inclusion of longan peel (LP) powder in the diet of Nile Tilapia (), focusing on comparative evaluations of growth performance, immunity, and immune-antioxidant related gene expressions. For this purpose, a total of 300 healthy fish (average initial weight: 13.70 ± 0.

View Article and Find Full Text PDF

Aquaculture plays a critical role in global food security, with Nile tilapia () recognized for its adaptability and robust growth. However, traditional feeds, heavily reliant on fishmeal (FM) and soybean meal, face economic and environmental challenges. In response, black soldier fly larvae meal (BSFLM) has emerged as a promising, nutrient-dense alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!