Design, Synthesis, and Characterization of a Novel 2'-5'-Linked Amikacin-Binding Aptamer: An Experimental and MD Simulation Study.

ACS Chem Biol

Department of Chemistry and the RNA Institute, University at Albany, State University of New York, Albany, New York12222, United States.

Published: December 2022

To extend the approach of using RNA aptamers as transient protective groups for the synthesis of novel small-molecule drug derivatives from the existing aminoglycosides, we incorporated 2'-5' phosphodiester backbone modification in a structurally known neomycin RNA aptamer and studied the binding of a series of aminoglycosides using isothermal calorimetry (ITC) and molecular dynamics (MD) simulation. Experimental characterization of amikacin, a commercially available and widely used aminoglycoside for treating bacterial infections, shows that the aptamer A1 with a 2'-5' linkage between G15 and U16 exhibits a sevenfold increase in binding affinity with a lower binding energy compared to the native aptamer. Molecular dynamics (MD) simulation studies rationalize that this noncanonical linkage generates a narrower binding pocket by creating a superspiral RNA helical structure, which improves the ligand's fit in the binding pocket. These results provide new insights into applying 2'-5' linkages to diversify functional RNA aptamers as noncovalent protective groups in the synthesis of aminoglycoside derivatives, which can be further extended to other current drug molecules and complex natural compounds to make new pools of drug candidates more efficiently.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400016PMC
http://dx.doi.org/10.1021/acschembio.2c00653DOI Listing

Publication Analysis

Top Keywords

rna aptamers
8
protective groups
8
groups synthesis
8
molecular dynamics
8
dynamics simulation
8
binding pocket
8
binding
5
design synthesis
4
synthesis characterization
4
characterization novel
4

Similar Publications

High-throughput proteomic platforms are crucial to identify novel Alzheimer's disease (AD) biomarkers and pathways. In this study, we evaluated the reproducibility and reliability of aptamer-based (SomaScan 7k) and antibody-based (Olink Explore 3k) proteomic platforms in cerebrospinal fluid (CSF) samples from the Ace Alzheimer Center Barcelona real-world cohort. Intra- and inter-platform reproducibility were evaluated through correlations between two independent SomaScan assays analyzing the same samples, and between SomaScan and Olink results.

View Article and Find Full Text PDF

Thrombin binding aptamer (TBA) is one of the best-known G-quadruplex (G4)-forming aptamers that efficiently binds to thrombin, resulting in anticoagulant effects. TBA also possesses promising antiproliferative properties. As with most therapeutic oligonucleotides, chemical modifications are critical for therapeutic applications, particularly to improve thermodynamic stability, resistance in biological environment, and target affinity.

View Article and Find Full Text PDF

Inefficient targeting of muscle stem cells (MuSCs), also called satellite cells, represents a major bottleneck of current therapeutic strategies for muscular dystrophies, as it precludes the possibility of promoting compensatory regeneration. Here we describe a muscle-targeting delivery platform, based on gold nanoparticles, that enables the release of therapeutic oligonucleotides into MuSCs. We demonstrate that AuNPs conjugation to an aptamer against α7/β1 integrin dimers directs either local or systemic delivery of microRNA-206 to MuSCs, thereby promoting muscle regeneration and improving muscle functionality, in a mouse model of Duchenne Muscular Dystrophy.

View Article and Find Full Text PDF

Aptamers bind to their targets with exceptional affinity and specificity. However, their intracellular application is hampered by the lack of knowledge about the effect of the cellular milieu on the RNA structure/stability. In this study, cellular crowding was mimicked using polyethylene glycol (PEG), and the crucial role of Mg ions in stabilizing the structure of an RNA aptamer was investigated.

View Article and Find Full Text PDF

Near-infrared fluorogenic RNA for in vivo imaging and sensing.

Nat Commun

January 2025

Interdisciplinary Science Center, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.

Fluorogenic RNA aptamers have various applications, including use as fluorescent tags for imaging RNA trafficking and as indicators of RNA-based sensors that exhibit fluorescence upon binding small-molecule fluorophores in living cells. Current fluorogenic RNA:fluorophore complexes typically emit visible fluorescence. However, it is challenging to develop fluorogenic RNA with near-infrared (NIR) fluorescence for in vivo imaging and sensing studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!