Systemic lupus erythematosus (SLE) is a systemic, autoimmune disease characterized by chronic inflammation and organ damage. Dapirolizumab pegol inhibits CD40 ligand (CD40L) and is currently undergoing phase 3 trials for the treatment of SLE. To describe the pharmacokinetic characteristics of dapirolizumab pegol and the relationship between exposure and probability of achieving a British Isles Lupus Assessment Group-based Composite Lupus Assessment (BICLA) response, a population pharmacokinetic (popPK) model and an exposure-response model were developed, based on results of the phase 2b trial (RISE; NCT02804763) of dapirolizumab pegol in SLE. Dapirolizumab pegol pharmacokinetics were found to be dose proportional and well described by a 2-compartment model with first-order elimination from the central compartment. In the popPK model, body weight was the only significant covariate. The average concentration of dapirolizumab pegol, derived from the popPK model, was incorporated into the exposure-response model. Overall, the exposure-response model showed that treatment with dapirolizumab pegol increased the probability of transitioning from BICLA "Nonresponder" to "Responder." No significant covariates on BICLA responder status were identified. Notably, the half maximal effective concentration was greater for the transition from "Responder" to "Nonresponder" (150 µg/mL) than the transition from "Nonresponder" to "Responder" (12 µg/mL), indicating that sustained dapirolizumab pegol concentrations may be required to maintain BICLA response. In conclusion, dapirolizumab pegol pharmacokinetics were as expected for a PEGylated molecule and results from the exposure-response model indicate that a favorable dapirolizumab pegol effect was identified for both BICLA "Nonresponder" to "Responder" and "Responder" to "Nonresponder" transition probabilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcph.2188 | DOI Listing |
Am J Clin Dermatol
July 2023
Department of Dermatology, University Hospital Bonn, 53127, Bonn, Germany.
Lupus erythematosus comprises a spectrum of autoimmune diseases that may affect various organs (systemic lupus erythematosus [SLE]) or the skin only (cutaneous lupus erythematosus [CLE]). Typical combinations of clinical, histological and serological findings define clinical subtypes of CLE, yet there is high interindividual variation. Skin lesions arise in the course of triggers such as ultraviolet (UV) light exposure, smoking or drugs; keratinocytes, cytotoxic T cells and plasmacytoid dendritic cells (pDCs) establish a self-perpetuating interplay between the innate and adaptive immune system that is pivotal for the pathogenesis of CLE.
View Article and Find Full Text PDFJ Clin Pharmacol
April 2023
UCB Pharma, Slough, UK.
Systemic lupus erythematosus (SLE) is a systemic, autoimmune disease characterized by chronic inflammation and organ damage. Dapirolizumab pegol inhibits CD40 ligand (CD40L) and is currently undergoing phase 3 trials for the treatment of SLE. To describe the pharmacokinetic characteristics of dapirolizumab pegol and the relationship between exposure and probability of achieving a British Isles Lupus Assessment Group-based Composite Lupus Assessment (BICLA) response, a population pharmacokinetic (popPK) model and an exposure-response model were developed, based on results of the phase 2b trial (RISE; NCT02804763) of dapirolizumab pegol in SLE.
View Article and Find Full Text PDFRheumatology (Oxford)
November 2021
UCB Pharma, Monheim am Rhein, Germany.
Objective: To evaluate the dose-response, efficacy and safety of dapirolizumab pegol (DZP) in patients with SLE.
Methods: Adults with moderately to severely active SLE (SLEDAI-2K score ≥6 and ≥1 BILAG A or ≥2 BILAG B domain scores), receiving stable CS (≤40 mg/day prednisone-equivalent), antimalarial or immunosuppressant drugs were included. Patients with stable LN (proteinuria ≤2 g/day) not receiving high-dose CS or CYC were permitted entry.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!