Neuro faces of beneficial T cells: essential in brain, impaired in aging and neurological diseases, and activated functionally by neurotransmitters and neuropeptides.

Neural Regen Res

Faculty of Medicine, The Hebrew University of Jerusalem, Campus Ein Karem; Institute of Gene Therapy, The Hadassah University Hospital -Ein Karem, Jerusalem, Israel.

Published: June 2023

T cells are essential for a healthy life, performing continuously: immune surveillance, recognition, protection, activation, suppression, assistance, eradication, secretion, adhesion, migration, homing, communications, and additional tasks. This paper describes five aspects of normal beneficial T cells in the healthy or diseased brain. First, normal beneficial T cells are essential for normal healthy brain functions: cognition, spatial learning, memory, adult neurogenesis, and neuroprotection. T cells decrease secondary neuronal degeneration, increase neuronal survival after central nervous system (CNS) injury, and limit CNS inflammation and damage upon injury and infection. Second, while pathogenic T cells contribute to CNS disorders, recent studies, mostly in animal models, show that specific subpopulations of normal beneficial T cells have protective and regenerative effects in several neuroinflammatory and neurodegenerative diseases. These include Multiple Sclerosis (MS), Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), stroke, CNS trauma, chronic pain, and others. Both T cell-secreted molecules and direct cell-cell contacts deliver T cell neuroprotective, neuroregenerative and immunomodulatory effects. Third, normal beneficial T cells are abnormal, impaired, and dysfunctional in aging and multiple neurological diseases. Different T cell impairments are evident in aging, brain tumors (mainly Glioblastoma), severe viral infections (including COVID-19), chronic stress, major depression, schizophrenia, Parkinson's disease, Alzheimer's disease, ALS, MS, stroke, and other neuro-pathologies. The main detrimental mechanisms that impair T cell function are activation-induced cell death, exhaustion, senescence, and impaired T cell stemness. Fourth, several physiological neurotransmitters and neuropeptides induce by themselves multiple direct, potent, beneficial, and therapeutically-relevant effects on normal human T cells, via their receptors in T cells. This scientific field is called "Nerve-Driven Immunity". The main neurotransmitters and neuropeptides that induce directly activating and beneficial effects on naïve normal human T cells are: dopamine, glutamate, GnRH-II, neuropeptide Y, calcitonin gene-related peptide, and somatostatin. Fifth, "Personalized Adoptive Neuro-Immunotherapy". This is a novel unique cellular immunotherapy, based on the "Nerve-Driven Immunity" findings, which was recently designed and patented for safe and repeated rejuvenation, activation, and improvement of impaired and dysfunctional T cells of any person in need, by ex vivo exposure of the person's T cells to neurotransmitters and neuropeptides. Personalized adoptive neuro-immunotherapy includes an early ex vivo personalized diagnosis, and subsequent ex vivo → in vivo personalized adoptive therapy, tailored according to the diagnosis. The Personalized Adoptive Neuro-Immunotherapy has not yet been tested in humans, pending validation of safety and efficacy in clinical trials, especially in brain tumors, chronic infectious diseases, and aging, in which T cells are exhausted and/or senescent and dysfunctional.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838142PMC
http://dx.doi.org/10.4103/1673-5374.357903DOI Listing

Publication Analysis

Top Keywords

beneficial cells
20
neurotransmitters neuropeptides
16
normal beneficial
16
cells
14
cells essential
12
personalized adoptive
12
neurological diseases
8
alzheimer's disease
8
parkinson's disease
8
als stroke
8

Similar Publications

The Role of YY1 in the Regulation of LAG-3 Expression in CD8 T Cells and Immune Evasion in Cancer: Therapeutic Implications.

Cancers (Basel)

December 2024

Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.

The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients.

View Article and Find Full Text PDF

Evaluation of the Effects of Mulberry Leaf Extracts L. on Cardiovascular, Renal, and Platelet Function in Experimental Arterial Hypertension.

Nutrients

December 2024

Departamento Fisiología, Facultad Medicina, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, 30120 Murcia, Spain.

Introduction: Numerous epidemiological studies have demonstrated that consuming foods rich in polyphenols and flavonoids can have beneficial effects on various diseases, including arterial hypertension (HTN). Recent research from our laboratory has shown that certain flavonoids exhibit antihypertensive properties in several animal models of HTN. Our objective was to evaluate the effect of L.

View Article and Find Full Text PDF

This comprehensive review explores the biological functions of seed proteins and peptides, highlighting their significant potential for health and therapeutic applications. This review delves into the mechanisms through which perilla peptides combat oxidative stress and protect cells from oxidative damage, encompassing free radical scavenging, metal chelating, in vivo antioxidant, and cytoprotective activities. Perilla peptides exhibit robust anti-aging properties by activating the Nrf2 pathway, enhancing cellular antioxidant capacity, and supporting skin health through the promotion of keratinocyte growth, maintenance of collagen integrity, and reduction in senescent cells.

View Article and Find Full Text PDF

Goose Deoxycholic Acid Ameliorates Liver Injury in Laying Hens with Fatty Liver Hemorrhage Syndrome by Inhibiting the Inflammatory Response.

Int J Mol Sci

January 2025

Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.

Fatty liver hemorrhagic syndrome (FLHS) in laying hens is a nutritional and metabolic disease involving liver enlargement, hepatic steatosis, and hepatic hemorrhage as the primary symptoms. The syndrome is prone to occur during the peak laying period of laying hens, which has resulted in significant economic losses in the laying hen breeding industry; however, the specific pathogenesis of FLHS remains unclear. Our group and previous studies have shown that bile acid levels are significantly decreased during the development of fatty liver and that targeted activation of bile acid-related signaling pathways is beneficial for preventing and treating fatty liver.

View Article and Find Full Text PDF

Mitochondria and the Repurposing of Diabetes Drugs for Off-Label Health Benefits.

Int J Mol Sci

January 2025

Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.

This review describes our current understanding of the role of the mitochondria in the repurposing of the anti-diabetes drugs metformin, gliclazide, GLP-1 receptor agonists, and SGLT2 inhibitors for additional clinical benefits regarding unhealthy aging, long COVID, mental neurogenerative disorders, and obesity. Metformin, the most prominent of these diabetes drugs, has been called the "Drug of Miracles and Wonders," as clinical trials have found it to be beneficial for human patients suffering from these maladies. To promote viral replication in all infected human cells, SARS-CoV-2 stimulates the infected liver cells to produce glucose and to export it into the blood stream, which can cause diabetes in long COVID patients, and metformin, which reduces the levels of glucose in the blood, was shown to cut the incidence rate of long COVID in half for all patients recovering from SARS-CoV-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!