During aging, the proliferation and differentiation ability of mesenchymal stem/stromal cells (MSCs) gets affected, and hence, aged MSCs are not preferred for regenerative purposes. Rapid identification of aging-associated changes within MSCs and the mechanistic pathways involved are necessary to determine optimal cell sources to treat musculoskeletal disorders in older patients. In the present study, we have identified a set of phenotypic markers, namely downregulated expression of CD90 and upregulated expression of CD45, as age-defining markers for the bone marrow-derived MSCs. We also show that these phenotypic changes in aged MSCs correlate with their aging-mediated differentiation defects. We find that oxidative stress signaling leading to the activation of nuclear factor kappa B (NF-κB) plays an essential role in altering the phenotype and differentiation ability of the aged MSCs. We further show that treatment of aged MSCs with the conditioned medium (CM) derived from young MSCs (young-CM) restored their phenotype and differentiation potential to the young-like by ameliorating activation of NF-κB signaling in them. Similar changes could also be achieved by using an inhibitor of NF-κB signaling, showing that oxidative stress-induced NF-κB activation is the causative factor in the aging of MSCs. Additionally, we show that treating young MSCs with hydrogen peroxide mimics all the aging-mediated changes in them, underscoring the involvement of oxidative stress in the aging of MSCs. Overall, our data suggest that the altered expression of CD90 and CD45 surface markers can be used as a primary screen to identify the onset of aging in the MSCs, which can be quickly reversed by their in vitro treatment with young-CM or NF-κB inhibitor. Our study also puts the phenotypic characterization of MSCs in a clinical perspective.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2022.0213DOI Listing

Publication Analysis

Top Keywords

aged mscs
16
mscs
13
aging mscs
12
mesenchymal stromal
8
stromal cells
8
differentiation ability
8
expression cd90
8
oxidative stress
8
phenotype differentiation
8
young mscs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!