The temporal expression of circulating microRNAs after acute experimental pain in humans.

Eur J Pain

Center for Neuroplasticity and Pain (CNAP), SMI, Aalborg University, Department of Health Science and Technology, Faculty of Medicine, Aalborg, Denmark.

Published: March 2023

Background: MicroRNAs (miRNAs) can modulate several biological systems, including the pain system. This study aimed to evaluate the temporal expression of circulating miRNAs in the plasma of healthy volunteers as a marker for epigenetic changes before and after an acute, experimental, pain provocation by intramuscular hypertonic saline injection.

Methods: Twenty volunteers were randomly allocated into two groups and received either hypertonic (pain) or isotonic (control) saline injection in the first dorsal interosseous muscle of their dominant hand. Pain intensity was continuously recorded for 20 minutes after injection on a VAS scale from 0 to 100 (0 indicates no pain and 100 the worst imaginable pain). Blood samples were taken at baseline, 30 minutes, 3 hours, and 24 hours post-injection, and plasma was separated. MiRNA extracts were used for RNA sequencing with the Illumina NextSeq platform. MiRNA transcripts were compared between the pain and the no-pain, control group at every time point. Significant differences were considered when folds were >2 and the False Discovery Rate was p < 0.05.

Results: After 30 minutes, 4 miRNAs were significantly altered in the pain group compared to controls, which increased to 24 after 3 hours and to 42 after 24 hours from baseline (p < 0.0001). Two miRNAs were consistently upregulated throughout the experiment. Enrichment analysis showed significant miRNAs involved in brain perception of pain, brain signalling and response to stimuli.

Conclusions: This exploratory study is the first to report on the temporal expression of circulating miRNAs after an acute, human experimental muscle pain model.

Significance: This exploratory study evaluated the temporal profile of circulating miRNAs in the plasma of healthy subjects after acute experimental pain. Several miRNAs were altered in subjects at the times of follow-up after the acute pain model when compared to controls. MiRNAs previously associated with pain processes were altered in the pain group. Our results, by showing the fast and prolonged modifications of miRNA elicited by the acute experimental pain model, add new perspectives to the topic of epigenetics and pain.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ejp.2062DOI Listing

Publication Analysis

Top Keywords

temporal expression
8
expression circulating
8
acute experimental
8
pain
8
experimental pain
8
circulating micrornas
4
micrornas acute
4
pain humans
4
humans background
4
background micrornas
4

Similar Publications

Temporal dynamics of airborne fungi in Swedish forest nurseries.

Appl Environ Microbiol

January 2025

Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.

In Sweden, reforestation of managed forests relies predominantly on planting nursery-produced tree seedlings. However, the intense production using containerized cultivation systems (e.g.

View Article and Find Full Text PDF

Rheumatic heart disease (RHD) is an important public health problem in Africa. Mapping the epidemiology of RHD involves elucidating its geographic distribution, temporal trends, and demographic characteristics. The prevalence of RHD in Africa varies widely, with estimates ranging from 2.

View Article and Find Full Text PDF

Epilepsy is one of the most common neurological disorders. Calcium dysregulation and neuroinflammation are essential and common mechanisms in epileptogenesis. Sarco/endoplasmic reticulum (ER) Ca-ATPase 2b (SERCA2b), a crucial calcium regulatory pump, plays pathological roles in various calcium dysregulation-related diseases.

View Article and Find Full Text PDF

Background: Neurodegeneration due to neurotoxicity is one of the phenomena in temporal lobe epilepsy. Experimentally, hippocampal excitotoxicity process can occur due to kainic acid exposure, especially in the CA3 area. Neuronal death, astrocyte reactivity and increased calcium also occur in hippocampal excitotoxicity, but few studies have investigated immediate effect after kainic acid exposure.

View Article and Find Full Text PDF

Conventional scanned optical coherence tomography (OCT) suffers from the frame rate/resolution tradeoff, whereby increasing image resolution leads to decreases in the maximum achievable frame rate. To overcome this limitation, we propose two variants of machine learning (ML)-based adaptive scanning approaches: one using a ConvLSTM-based sequential prediction model and another leveraging a temporal attention unit (TAU)-based parallel prediction model for scene dynamics prediction. These models are integrated with a kinodynamic path planner based on the clustered traveling salesperson problem to create two versions of ML-based adaptive scanning pipelines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!