Objective: To report a case of glycogen storage disease (GSD) type Ia misdiagnosed as multiple acyl-coenzyme a dehydrogenase deficiency (MADD) by mass spectrometry.

Methods: A 7 months old boy was admitted to our hospital for elevated transaminase levels lasting more than 1 month. His blood biochemistry showed hypoglycemia, metabolic acidosis, hyperlipidemia, elevated lactate and uric acid, elevated alanine amino transferase (ALT), aspartate amino transaminase (AST) and gamma-glutamyl transferase (GGT). Mass spectrometry analysis of blood and urine showed elevated blood acylcarnitines and dicarboxylic aciduria, indicating multiple acyl-coenzyme A dehydrogenase deficiency. Sanger sequencing of all exons of glucose-6-phosphatase (G6Pase) and electronic transfer flavoprotein dehydrogenase (ETFDH) was performed for the patient and his parents.

Results: Coding and flanking sequences of the G6Pase gene detected two heterozygous single base substitutions in the boy. One variant was in exon 1 (c.209G > A), Which was also detected in the father. Another was in exon 5 (c.648G > T), which was detected in the mother. Coding and flanking sequences of the ETFDH gene revealed no pathogenic/likely pathogenic variants in the boy.

Conclusion: GSD Ia can manifest elevated blood acyl carnitines and dicarboxylic aciduria which were the typical clinical manifestations of MADD. So the patient with clinical manifestations similar to MADD is in need of differential diagnosis for GSD Ia. Genetic testing is helpful to confirming the diagnosis of inherited metabolic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9702534PMC
http://dx.doi.org/10.3389/fped.2022.999596DOI Listing

Publication Analysis

Top Keywords

multiple acyl-coenzyme
12
acyl-coenzyme dehydrogenase
12
dehydrogenase deficiency
12
glycogen storage
8
storage disease
8
type misdiagnosed
8
misdiagnosed multiple
8
mass spectrometry
8
elevated blood
8
dicarboxylic aciduria
8

Similar Publications

Nucleo-cytosolic acetyl-CoA drives tumor immune evasion by regulating PD-L1 in melanoma.

Cell Rep

December 2024

Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Innovation Research Institute, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Military Medical Innovation Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China. Electronic address:

Acetyl coenzyme A (acetyl-CoA), a versatile central metabolite, plays a critical role in various metabolic processes and protein acetylation. While its impact on tumor cell properties is well established, the connection between acetyl-CoA metabolism and immune evasion in tumors remains unclear. Here, we uncover a mechanism by which nucleo-cytosolic acetyl-CoA contributes to immune evasion through regulation of programmed death ligand 1 (PD-L1).

View Article and Find Full Text PDF

Bempedoic acid is a new drug that improves the control of cholesterol levels, either as monotherapy or in combination with existing lipid-lowering therapies, and shows clinical efficacy in cardiovascular disease patients. Thus, patients with comorbidities and under multiple therapies may be eligible for bempedoic acid, thus facing the potential problem of drug-drug interactions (DDIs). Bempedoic acid is a prodrug administered orally at a fixed daily dose of 180 mg.

View Article and Find Full Text PDF

ACSL4 and polyunsaturated lipids support metastatic extravasation and colonization.

Cell

November 2024

Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China. Electronic address:

Metastatic dissemination to distant organs demands that cancer cells possess high morphological and metabolic adaptability. However, contributions of the cellular lipidome to metastasis remain elusive. Here, we uncover a correlation between metastasis potential and ferroptosis susceptibility in multiple cancers.

View Article and Find Full Text PDF

Lipid storage myopathies are considered inborn errors of metabolism affecting the fatty acid metabolism and leading to accumulation of lipid droplets in the cytoplasm of muscle fibers. Specific diagnosis is based on investigation of organic aids in urine, acylcarnitines in blood and genetic testing. An acquired lipid storage myopathy in patients treated with the antidepressant drug sertraline, a serotonin reuptake inhibitor, has recently emerged as a new tentative differential diagnosis.

View Article and Find Full Text PDF

Extending the G1 phase improves the production of lipophilic compounds in yeast by boosting enzyme expression and increasing cell size.

Proc Natl Acad Sci U S A

November 2024

Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

Cell phase engineering can significantly impact protein synthesis and cell size, potentially enhancing the production of lipophilic products. This study investigated the impact of G1 phase extension on resource allocation, metabolic functions, and the unfolded protein response (UPR) in yeast, along with the potential for enhancing the production of lipophilic compounds. In brief, the regulation of the G1 phase was achieved by deleting (G1 cyclin) in various yeast strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!