The use of hydrogel as a filling medium to recombine dispersed microencapsulated cells to form an embedded gel-cell microcapsule complex is a new idea based on bottom-up tissue construction, which is benefit for cell distribution and of great significance for tissue construction research . In this experiment, sodium alginate and chitosan were used as the main materials, rat normal liver cell BRL-3A was used as the model cell to prepare "artificial cells". Silkworm pupa was used as raw material to extract silk fibroin solution, which was prepared by ultrasound to be the silk fibroin gel; silk fibroin hydrogel-microencapsulated hepatocyte embedded complex was then prepared by using silk fibroin gel as filling medium; the complex was cultured under three modes (static, shaking, and 3D microgravity), and the tissue forming ability of rat hepatocytes was investigated. The results showed that the microgravity culture condition can enhance the cell proliferation and promote the formation of cell colonies in the microcapsules; silk fibroin can form an embedded gel-cell microcapsule complex with microencapsulated cells, which provided mechanical support for the structure of the composite. We hope that this bottom-up construction system will have potential applications in the fields of cell culture and tissue construction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704540PMC
http://dx.doi.org/10.3389/fbioe.2022.1056652DOI Listing

Publication Analysis

Top Keywords

silk fibroin
20
tissue construction
12
cell culture
8
filling medium
8
microencapsulated cells
8
form embedded
8
embedded gel-cell
8
gel-cell microcapsule
8
microcapsule complex
8
fibroin gel
8

Similar Publications

Effects of Silk Fibroin Hydrogel Degradation on the Proliferation and Chondrogenesis of Encapsulated Stem Cells.

Biomacromolecules

January 2025

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.

Silk fibroin (SF) hydrogels are widely used in three-dimensional (3D) cell culture and tissue repair. Despite their importance, few studies have focused on regulating their degradation and further revealing the effects of the degradation process on encapsulated cell behaviors. Herein, SF hydrogels with equivalent initial properties and different degradation rates were prepared by adjusting the ratios between the hydrogel-encapsulated normal SF microspheres (MS) and enzyme-loaded SF microspheres (MS).

View Article and Find Full Text PDF

Silk fiber, produced by the silkworm , is a protein fiber with an excellent mechanical strength and broad biocompatibility. Multiple approaches, including genetic and chemical methods, must be combined to tailor silk fiber properties for wide applications, such as textiles and biomaterials. Genetic code expansion (GCE) is an alternative method to alter proteins' chemical and physical properties by incorporating synthetic amino acids into their primary structures.

View Article and Find Full Text PDF

Review on application of silk fibroin hydrogels in the management of wound healing.

Int J Biol Macromol

January 2025

State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China. Electronic address:

Wounds are regarded as disruptions in the integrity of human skin tissues, and the process of wound healing is often characterized as protracted and complex, primarily due to the potential infection or inflammation caused by microorganisms. The quest for innovative solutions that accelerate wound healing while prioritizing patient safety and comfort has emerged as a focal point. Within this pursuit, silkworm silk fibroin-a natural polymer extracted from silk cocoons-exhibits a distinctive combination of properties including biocompatibility, biodegradability, superior mechanical strength, water absorption, and low immunogenicity, which align closely with the demands of contemporary wound care.

View Article and Find Full Text PDF

Injectable biomimetic hydrogel based on modified chitosan and silk fibroin with decellularized cartilage extracellular matrix for cartilage repair and regeneration.

Int J Biol Macromol

January 2025

Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94th, Tianjin 300071, PR China. Electronic address:

Cartilage defect repair remains a challenge for clinicians due to the limited self-healing capabilities of cartilage. Microenvironment-specific biomimetic hydrogels have shown great potential in cartilage regeneration because of their excellent biological properties. In this study, a hydrogel system consisting of p-hydroxybenzene propanoic acid-modified chitosan (PC), silk fibroin (SF) and decellularized cartilage extracellular matrix (DCM) was prepared.

View Article and Find Full Text PDF

The incidence rate and mortality rate of breast cancer remain high, and there is an urgent need for safe and effective drugs. The excellent biological activity of hesperidin (HE) is a potential drug for the treatment of breast cancer. In this study, silk fibroin peptides (SFP) were used as delivery carriers and HE loaded SFP nanofibers (SFP/HE NFs) was prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!