Pairing of Aqueous and Nonaqueous Electrosynthetic Reactions Enabled by a Redox Reservoir Electrode.

J Am Chem Soc

Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin53706, United States.

Published: December 2022

Paired electrolysis methods are appealing for chemical synthesis because they generate valuable products at both electrodes; however, development of such reactions is complicated by the need for both half-reactions to proceed under mutually compatible conditions. Here, a modular electrochemical synthesis (ModES) strategy bypasses these constraints using a "redox reservoir" (RR) to pair electrochemical half-reactions across aqueous and nonaqueous solvents. Electrochemical oxidation reactions in organic solvents, the conversion of 4--butyltoluene to benzylic dimethyl acetal and aldehyde in methanol or the oxidative C-H amination of naphthalene in acetonitrile, and the reduction of oxygen to hydrogen peroxide in water were paired using nickel hexacyanoferrate as an RR that can selectively store and release protons (and electrons) while serving as the counter electrode for these reactions. Selective proton transport through the RR is optimized and confirmed to enable the ion balance, and thus the successful pairing, between redox half-reactions that proceed with different rates, on different scales, and in different solvents (methanol, acetonitrile, and water).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900757PMC
http://dx.doi.org/10.1021/jacs.2c09632DOI Listing

Publication Analysis

Top Keywords

aqueous nonaqueous
8
half-reactions proceed
8
pairing aqueous
4
nonaqueous electrosynthetic
4
reactions
4
electrosynthetic reactions
4
reactions enabled
4
enabled redox
4
redox reservoir
4
reservoir electrode
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!