A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Histone acetyltransferase HAM1 interacts with molecular chaperone DNAJA2 and confers immune responses through salicylic acid biosynthetic genes in cassava. | LitMetric

Histone acetyltransferase HAM1 interacts with molecular chaperone DNAJA2 and confers immune responses through salicylic acid biosynthetic genes in cassava.

Plant Cell Environ

Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China.

Published: February 2023

Cassava bacterial blight (CBB) is one of the most serious diseases in cassava production, so it is essential to explore the underlying mechanism of immune responses. Histone acetylation is an important epigenetic modification, however, its relationship with cassava disease resistance remains unclear. Here, we identified 10 histone acetyltransferases in cassava and found that the transcript of MeHAM1 showed the highest induction to CBB. Functional analysis showed that MeHAM1 positively regulated disease resistance to CBB through modulation of salicylic acid (SA) accumulation. Further investigation revealed that MeHAM1 directly activated SA biosynthetic genes' expression via promoting lysine 9 of histone 3 (H3K9) acetylation and lysine 5 of histone 4 (H4K5) acetylation of these genes. In addition, molecular chaperone MeDNAJA2 physically interacted with MeHAM1, and MeDNAJA2 also regulated plant immune responses and SA biosynthetic genes. In conclusion, this study illustrates that MeHAM1 and MeDNAJA2 confer immune responses through transcriptional programming of SA biosynthetic genes via histone acetylation. The MeHAM1 & MeDNAJA2-SA biosynthesis module not only constructs the direct relationship between histone acetylation and cassava disease resistance, but also provides gene network with potential value for genetic improvement of cassava disease resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.14501DOI Listing

Publication Analysis

Top Keywords

immune responses
16
disease resistance
16
biosynthetic genes
12
histone acetylation
12
cassava disease
12
molecular chaperone
8
salicylic acid
8
lysine histone
8
meham1 mednaja2
8
histone
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!