Background: The discovery of microorganisms capable of complete ammonia oxidation to nitrate (comammox) has prompted a paradigm shift in our understanding of nitrification, an essential process in N cycling, hitherto considered to require both ammonia oxidizing and nitrite oxidizing microorganisms. This intriguing metabolism is unique to the genus Nitrospira, a diverse taxon previously known to only contain canonical nitrite oxidizers. Comammox Nitrospira have been detected in diverse environments; however, a global view of the distribution, abundance, and diversity of Nitrospira species is still incomplete.

Results: In this study, we retrieved 55 metagenome-assembled Nitrospira genomes (MAGs) from newly obtained and publicly available metagenomes. Combined with publicly available MAGs, this constitutes the largest Nitrospira genome database to date with 205 MAGs, representing 132 putative species, most without cultivated representatives. Mapping of metagenomic sequencing reads from various environments against this database enabled an analysis of the distribution and habitat preferences of Nitrospira species. Comammox Nitrospira's ecological success is evident as they outnumber and present higher species-level richness than canonical Nitrospira in all environments examined, except for marine and wastewaters samples. The type of environment governs Nitrospira species distribution, without large-scale biogeographical signal. We found that closely related Nitrospira species tend to occupy the same habitats, and that this phylogenetic signal in habitat preference is stronger for canonical Nitrospira species. Comammox Nitrospira eco-evolutionary history is more complex, with subclades achieving rapid niche divergence via horizontal transfer of genes, including the gene encoding hydroxylamine oxidoreductase, a key enzyme in nitrification.

Conclusions: Our study expands the genomic inventory of the Nitrospira genus, exposes the ecological success of complete ammonia oxidizers within a wide range of habitats, identifies the habitat preferences of (sub)lineages of canonical and comammox Nitrospira species, and proposes that horizontal transfer of genes involved in nitrification is linked to niche separation within a sublineage of comammox Nitrospira. Video Abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714041PMC
http://dx.doi.org/10.1186/s40168-022-01411-yDOI Listing

Publication Analysis

Top Keywords

nitrospira species
28
comammox nitrospira
20
nitrospira
16
ecological success
12
species
8
complete ammonia
8
habitat preferences
8
species comammox
8
canonical nitrospira
8
horizontal transfer
8

Similar Publications

Article Synopsis
  • Soil cadmium (Cd) contamination from industrial activities poses a significant risk to wheat production, yet the role of rhizosphere bacteria in helping plants cope with this stress is not well understood.
  • A study examined how different levels of soil Cd contamination affected the growth of wheat and the dynamics of rhizosphere bacteria, revealing no major differences in Cd transport within the plants despite changes in soil conditions.
  • While bacterial richness remained similar across contamination levels, shifts in community composition were detected, with certain bacteria like Actinobacteria thriving under lower risk levels, and others like Patescibacteria being more prevalent when contamination is increased.
View Article and Find Full Text PDF

Combining quorum quenching by Rhodococcus sp. BH4 and Acinetobacter sp. DKY-1 to control biofouling in membrane bioreactors.

Bioresour Technol

December 2024

Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. Electronic address:

This study investigates a novel approach to mitigate biofouling in membrane bioreactors (MBRs) using a combinational quorum quenching (QQ) strategy. Rhodococcus sp. BH4 and Acinetobacter sp.

View Article and Find Full Text PDF

Bacterial Communities From Two Freshwater Aquaculture Systems in Northern Germany.

Environ Microbiol Rep

December 2024

Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany.

The microbial communities in aquaculture systems are primarily affected by changes in water quality, fish metabolism, feeding strategies and fish disease prevention treatments. Monitoring changes in aquatic microbiomes related to aquaculture activities is necessary to improve management strategies and reduce the environmental impact of aquaculture water discharge. This study assessed the effects of activities within two fish farms on water microbiome composition by analysing the water entering and leaving both systems.

View Article and Find Full Text PDF

The functional dominance and metabolic diversity of comammox Nitrospira in recirculating aquaculture systems.

Water Res

December 2024

Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.

As a newly discovered group of ammonia-oxidizing microorganisms, complete ammonia oxidizing (comammox) Nitrospira has been widely found in various oligotrophic ecosystems. However, their activity and ecological niche is still unclear in recirculating aquaculture systems (RAS). This study aimed to compare the abundance and activity of comammox Nitrospira, ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), and elucidate metabolic versatility of comammox Nitrospira in RAS.

View Article and Find Full Text PDF

Functional characteristics and mechanisms of microbial community succession and assembly in a long-term moving bed biofilm reactor treating real municipal wastewater.

Environ Res

December 2024

Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai, 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China. Electronic address:

Moving bed biofilm reactor (MBBR) technology with diverse merits is efficient in treating various waste streams whereas their microbial functional properties and ecology still need in-depth investigation, especially in real wastewater treatment systems. Herein, a well-controlled MBBR treating municipal wastewater was established to investigate the long-term system performance and the underlying principles of community succession and assembly. The system successfully achieved ammonium, TN, and chemical oxygen demand (COD) removal of 96.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!