Aiming to fill a gap in the literature, we aimed to identify the most promising EOs blocking in vitro cellular entry of SARS-CoV-2 delta variant without conferring human cytotoxicity and provide insights into the influence of their composition on these activities. Twelve EOs were characterized by gas chromatography coupled to mass spectrometry. The antiviral and cytotoxicity activities were determined using the cell-based pseudoviral entry with SARS-CoV-2 delta pseudovirus and the XTT assay in HeLa cells expressing human angiotensin-converting enzyme 2 (HeLa ACE-2), respectively. Syzygium aromaticum, Cymbopogon citratus, Citrus limon, Pelargonium graveolens, Origanum vulgare, "Illicium verum", and Matricaria recutita showed EC lowered or close to 1 µg/mL but also the lowest CC (0.20-1.70 µg/mL), except "I. verum" (30.00 µg/mL). Among these, "I. verum", C. limon, P. graveolens and S. aromaticum proved to be promising alternatives for SARS-CoV-2 delta variant inhibition (therapeutic index above 4), which possibly was related to the compounds (E)-anetole, limonene and beta-pinene, citronellol, and eugenol, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9709744 | PMC |
http://dx.doi.org/10.1038/s41598-022-25342-8 | DOI Listing |
Math Biosci Eng
December 2024
Department of Mathematics & Statistics, Georgia State University, Atlanta, USA.
Control and prevention strategies are indispensable tools for managing the spread of infectious diseases. This paper examined biological models for the post-vaccination stage of a viral outbreak that integrate two important mitigation tools: social distancing, aimed at reducing the disease transmission rate, and vaccination, which boosts the immune system. Five different scenarios of epidemic progression were considered: (ⅰ) the "no control" scenario, reflecting the natural evolution of a disease without any safety measures in place, (ⅱ) the "reconstructed" scenario, representing real-world data and interventions, (ⅲ) the "social distancing control" scenario covering a broad set of behavioral changes, (ⅳ) the "vaccine control" scenario demonstrating the impact of vaccination on epidemic spread, and (ⅴ) the "both controls concurrently" scenario incorporating social distancing and vaccine controls simultaneously.
View Article and Find Full Text PDFVirol J
January 2025
Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for in the Eastern Mediterranean Region, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia.
Background: Primary Immunodeficiency disorders (PID) can increase the risk of severe COVID-19 and prolonged infection. This study investigates the duration of SARS-CoV-2 excretion and the genetic evolution of the virus in pediatric PID patients as compared to immunocompetent (IC) patients.
Materials And Methods: A total of 40 nasopharyngeal and 24 stool samples were obtained from five PID and ten IC children.
Adv Sci (Weinh)
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.
View Article and Find Full Text PDFJ Integr Bioinform
January 2025
Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung 40133, Indonesia.
The emergence of new variants of SARS-CoV-2, including Alpha, Beta, Gamma, Delta, Omicron variants, and XBB sub-variants, contributes to the number of coronavirus cases worldwide. SARS-CoV-2 is a positive RNA virus with a genome of 29.9 kb that encodes four structural proteins: spike glycoprotein (S), envelope glycoprotein (E), membrane glycoprotein (M), and nucleocapsid glycoprotein (N).
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India.
The recent outbreak of the coronavirus (COVID-19) pandemic, caused by the SARS-CoV-2 virus, has posed serious threats to global health systems. Although several directions have been put by the WHO for effective treatment, use of antibiotics, particularly ciprofloxacin, in suspected and acquired Covid-19 patients has raised an even more serious concern of antibiotic resistance. Ciprofloxacin has been reported to inhibit entry of SARS-CoV-2 into the host cells via interacting with the spike (S) protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!