Physics-based reservoir simulation for fluid flow in porous media is a numerical simulation method to predict the temporal-spatial patterns of state variables (e.g. pressure p) in porous media, and usually requires prohibitively high computational expense due to its non-linearity and the large number of degrees of freedom (DoF). This work describes a deep learning (DL) workflow to predict the pressure evolution as fluid flows in large-scale 3-dimensional(3D) heterogeneous porous media. In particular, we develop an efficient feature coarsening technique to extract the most representative information and perform the training and prediction of DL at the coarse scale, and further recover the resolution at the fine scale by spatial interpolation. We validate the DL approach to predict pressure field against physics-based simulation data for a field-scale 3D geologic [Formula: see text] sequestration reservoir model. We evaluate the impact of feature coarsening on DL performance, and observe that the feature coarsening not only decreases the training time by [Formula: see text] and reduces the memory consumption by [Formula: see text], but also maintains temporal error [Formula: see text] on average. Besides, the DL workflow provides predictive efficiency with 1406 times speedup compared to physics-based numerical simulation. The key findings from this research significantly improve the training and prediction efficiency of deep learning model to deal with large-scale heterogeneous reservoir models, and thus it can also be further applied to accelerate workflows of history matching and reservoir optimization for close-loop reservoir management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712509PMC
http://dx.doi.org/10.1038/s41598-022-24774-6DOI Listing

Publication Analysis

Top Keywords

[formula text]
20
feature coarsening
16
deep learning
12
porous media
12
text] sequestration
8
numerical simulation
8
predict pressure
8
training prediction
8
[formula
5
text]
5

Similar Publications

This paper proposes a hybridized model for air quality forecasting that combines the Support Vector Regression (SVR) method with Harris Hawks Optimization (HHO) called (HHO-SVR). The proposed HHO-SVR model utilizes five datasets from the environmental protection agency's Downscaler Model (DS) to predict Particulate Matter ([Formula: see text]) levels. In order to assess the efficacy of the suggested HHO-SVR forecasting model, we employ metrics such as Mean Absolute Percentage Error (MAPE), Average, Standard Deviation (SD), Best Fit, Worst Fit, and CPU time.

View Article and Find Full Text PDF

Spin transport properties in a topological insulator sandwiched between two-dimensional magnetic layers.

Sci Rep

January 2025

Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691, Stockholm, Sweden.

Non-trivial band topology along with magnetism leads to different novel quantum phases. When time-reversal symmetry is broken in three-dimensional topological insulators (TIs) through, e.g.

View Article and Find Full Text PDF

Fuzzy self-tuning fractional order PD permanent magnet synchronous motor speed control based on torque compensation.

Sci Rep

January 2025

Changchun Automobile Economic & Technological Development Zone Employment Service Bureau, Jilin City, China.

The permanent magnet synchronous motor control system is characterized by its nonlinear and strongly coupled complexity, presenting significant challenges for control performance optimization. To address these challenges, a Fuzzy adaptive fractional order [Formula: see text] control strategy based on torque observation compensation is proposed. The parameters of the fractional order [Formula: see text] controller are optimized real time using fuzzy logic reasoning, in order to enhance the speed of parameters tuning, a graphical design method of the fractional order [Formula: see text] controller parameters based on frequency domain performance indicators is proposed to obtain the initial values of the fuzzy adaptive fractional order [Formula: see text] controller parameters graphically and intuitively.

View Article and Find Full Text PDF

A wealth of details regarding an individual's state of health, like a person's respiratory and metabolic functioning, can be studied by analyzing the volatile molecules and atoms in human exhaled breath. Besides, the salinity of seawater is a crucial factor in understanding its characteristics because any variation in the salinity of seawater represents the variations in the hydrological, biological, and chemical distributions. In this paper, a symmetrical one-dimensional phononic structure is theoretically designed using two symmetrical crystals separated with a defective cavity.

View Article and Find Full Text PDF

Advanced KNN-based cost-efficient algorithm for precision localization and energy optimization in dynamic underwater sensor networks.

Sci Rep

January 2025

Department of Natural and Engineering Sciences, College of Applied Studies and Community Services, King Saud University, Riyadh, 11543, Saudi Arabia.

Underwater environmental exploration using sensor nodes has emerged as a critical endeavor fraught with challenges such as localization errors, energy, and costs attributed to the dynamic nature of underwater environments. This paper proposes a KNN-based cost-efficient machine-learning algorithm aimed at optimizing underwater context acquisition with sensor nodes. By addressing existing localization challenges, the algorithm minimizes localization errors, energy consumption and Time costs while significantly enhancing localization accuracy to 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!