The proliferation and migration of vascular smooth muscle cells (VSMCs) after vascular injury lead to neointimal hyperplasia, thus aggravating vascular diseases. However, the molecular mechanisms underlying neointima formation are not fully elucidated. Extracellular vesicles (EVs) are mediators of various intercellular communications. The potential of EVs as regulators in cardiovascular diseases has raised significant interest. In the current study we investigated the role of circulating small extracellular vesicles (csEVs), the most abundant EVs (10 EVs/mL serum) in VSMC functions. csEVs were prepared from bovine, porcine or rat serum. We showed that incubation with csEVs (0.5 × 10-2 × 10) dose-dependently enhanced the proliferation and migration of VSMCs via the membrane phosphatidylserine (PS). In rats with ligation of right carotid artery, we demonstrated that application of csEVs in the ligated vessels aggravated neointima formation via interaction of membrane PS with injury. Furthermore, incubation with csEVs markedly enhanced the phosphorylation of AXL and MerTK in VSMCs. Pretreatment with BSM777607 (pan-TAM inhibitor), bemcentinib (AXL inhibitor) or UNC2250 (MerTK inhibitor) blocked csEV-induced proliferation and migration of VSMCs. We revealed that csEV-activated AXL and MerTK shared the downstream signaling pathways of Akt, extracellular signal-regulated kinase (ERK) and focal adhesion kinase (FAK) that mediated the effects of csEVs. We also found that csEVs increased the expression of AXL through activation of transcription factor YAP, which might constitute an AXL-positive feedback loop to amplify the signals. Finally, we demonstrated that dual inhibition of AXL/MerTK by ONO-7475 (0.1 µM) effectively hindered csEV-mediated proliferation and migration of VSMCs in ex vivo mouse aorta injury model. Based on these results, we propose an essential role for csEVs in proliferation and migration of VSMCs and highlight the feasibility of dual AXL/MerTK inhibitors in the treatment of vascular diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104856PMC
http://dx.doi.org/10.1038/s41401-022-01029-8DOI Listing

Publication Analysis

Top Keywords

proliferation migration
24
migration vsmcs
16
extracellular vesicles
12
axl mertk
12
circulating small
8
small extracellular
8
migration vascular
8
vascular smooth
8
smooth muscle
8
muscle cells
8

Similar Publications

GABPα targeted by miR-378a-5p inhibits the growth and angiogenesis of colorectal carcinoma.

Int J Biochem Cell Biol

December 2024

Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China; College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China. Electronic address:

Considering the high degree of malignancy, recurrence rate and poor prognosis, exploring promising targets is an imperious strategy for colorectal carcinoma therapy. Recent studies have indicated that GABPα plays a role in cancer aggressiveness, but its exact function and regulatory mechanisms in colorectal cancer progression remain unclear. This study aims to explore the biological role of GABPα and its upstream regulator, miR-378a-5p, in modulating cancer progression.

View Article and Find Full Text PDF

Fusion circRNA F-circEA1 facilitates EML4-ALK1 positive lung adenocarcinoma progression through the miR-4673/SMAD4/ADAR1 axis.

Cell Signal

December 2024

Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Jiangsu Province, China. Electronic address:

Circular RNA (circRNA) can sponge miRNA participate in the tumorigenesis and progression of various cancers. We substantiate for the first time that the fusion circular RNA (F-circRNA) F-circEA1 is involved in driving the echinoderm microtubule associated-protein like 4-anaplastic lymphoma kinase variant 1-positive (EML4-ALK1) lung adenocarcinoma (LUAD) progression and the expression of the parental gene EML4-ALK1, molecular mechanisms of F-circEA1 in the EML4-ALK1 LUAD remain unknown. Bioinformatics analysis showed that only miR-4673 can bind to F-circEA1 and bind to EML4-ALK1 3'-UTR to regulate the expression of EML4-ALK1.

View Article and Find Full Text PDF

CircDUSP16 mediates the effect of triple-negative breast cancer in pirarubicin via the miR-1224-3p/TFDP2 axis.

Biochem Pharmacol

December 2024

Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China. Electronic address:

Triple-negative breast cancer (TNBC) is an aggressive molecular subtype of breast cancer characterized by a high recurrence rate, poor prognosis, and elevated mortality. Identifying novel molecular targets is crucial for developing more effective therapeutic strategies against TNBC. Recent studies have highlighted the role of circular RNAs (circRNAs) in the progression of TNBC.

View Article and Find Full Text PDF

Sodium ferulate attenuates ischaemic stroke by mediating the upregulation of thrombospondin-4 expression and combined treatment with bone marrow mesenchymal stem cells.

Exp Neurol

December 2024

Department of Encephalopathy, Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518000, China; Department of Encephalopathy, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, Guangdong 518000, China. Electronic address:

Ischaemic stroke is one of the major diseases affecting human health, involving complex and diverse pathological mechanisms, including inflammatory response, oxidative stress and angiogenesis. Sodium ferulate (SF) exerts a protective effect on cerebral ischaemia/reperfusion and when combined with bone marrow mesenchymal stem cells (BMSCs), has a considerable therapeutic effect on brain injury in rats. Here, we speculate that SF also exerts cerebroprotective effects.

View Article and Find Full Text PDF

SP1/COL1A2/ZEB1 axis promotes TGF-β2-induced lens epithelial cell proliferation, migration, invasion and EMT process.

Exp Eye Res

December 2024

Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China. Electronic address:

Posterior capsule opacification (PCO) is the most common complication after cataract surgery. In this study, we used transforming growth factor beta-2 (TGF-β2)-induced SRA01/04 cells to mimic PCO cell model and explored the functions and underlying mechanisms of specific protein 1 (SP1) in TGF-β2-induced SRA01/04 cell development. MTT assay and EdU assay were carried out to explore the proliferation of SRA01/04 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!