Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Matsumoto Eosinophilia Shinshu (MES) is a rat model for hereditary blood eosinophilia. The incidence of eosinophilia is 100% in both female and male MES. The primary cause of the eosinophilia in MES is a loss-of-function mutation in the gene encoding the cytochrome b-245, alpha polypeptide (Cyba mutant allele). CYBA protein is a constituent of the superoxide-generating NADPH oxidase complex, the catalytic subunit of which is either NOX1, NOX2, or NOX4. However, the molecular mechanisms for the loss of CYBA to cause eosinophilia and even which of the three NOX isotypes is causally linked to the disease have been unknown. To resolve the latter issue, we generated F344/N rats knockout for Nox1, Nox2, and Nox4 genes. Also, we bred F344.MES-Cyba congenic rats that have a similar genetic background to the Nox knockout rats. We found that approximately 20% of female F344/N-Nox2 rats but none of the males developed blood eosinophilia. Also, we observed that all female F344.MES-Cyba and approximately 50% of male congenic rats developed the disorder. These results revealed that loss of NOX2 is the cause of blood eosinophilia in rats. Meanwhile, the data also indicated that in addition to the loss of NOX2 NADPH oxidase, both the genetic background of F344/N strain and gender influence the development of the disorder. These Nox and Cyba mutant rat strains with different eosinophilia incidences should be useful to elucidate molecular mechanisms and factors involved in the development of the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202711 | PMC |
http://dx.doi.org/10.1538/expanim.22-0122 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!