With the increasing development of metallopharmaceuticals, coordination compounds become viable alternatives for therapeutic uses. Despite the importance of platinum derivatives in this area, first-row transition metals complexes are welcome due to their characteristics. Vanadium is a promising metal in this context, as it has a range of compounds with different biological applications, including anticancer therapeutic effects. In this effort, the study of interactions between coordination compounds with deoxyribonucleic acid and with human serum albumin is fundamental. In this way, ten iminic ligands were synthesized by condensing p-substituted aromatic benzohydrazides (OH, CH, H, NO, and NH) with salicylaldehyde (L1As-L5As) or pyridoxal hydrochloride (L1P-L5P). These ligands have characteristics that allow the tridentate coordination of vanadium cations, leading to the formation of ten vanadium(V) complexes (C1As-C5As and C1P-C5P) with different structural features, all characterized by single-crystal X-ray diffraction, UV-Vis and infrared spectroscopies, and cyclic voltammetry. In addition, the complexes were tested for their interactions with calf thymus deoxyribonucleic acid and human serum albumin by spectroscopic assays and molecular docking calculations. These new results can contribute to further research and provide different ways to design new vanadium complexes with biological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2022.112070DOI Listing

Publication Analysis

Top Keywords

vanadiumv complexes
8
molecular docking
8
coordination compounds
8
biological applications
8
deoxyribonucleic acid
8
acid human
8
human serum
8
serum albumin
8
complexes derived
4
derived pyridoxal/salicylaldehyde
4

Similar Publications

Exposure to vanadium (V) occurs through the ingestion of contaminated water, polluted soil, V-containing foods and medications, and the toxicity and absorption during the small intestine phase after oral ingestion play crucial roles in the ultimate health hazards posed by V. In this study, the human colon adenocarcinoma (Caco-2) cells were selected as an intestinal absorption model to investigate the uptake and cytotoxicity of vanadyl sulfate (VOSO) and sodium orthovanadate (NaVO). Our results confirmed the cytotoxic effects of V(IV) and V(V) and revealed a greater toxicity of V(IV) than V(V) towards Caco-2 cells.

View Article and Find Full Text PDF

Glutarimidedioxime is a cyclic amidoxime moiety formed during the synthesis of amidoxime-functionalized fibers and apparently facilitates the extraction of uranium from seawater. Herein, we comprehensively explore differences between molybdenum and vanadium coordinated by glutarimidedioxime. The high adsorption of vanadium is explained by the formation of rare nonoxido vanadium(V) complexes, where each bare V is coordinated with two tridentate glutarimidedioxime ligands.

View Article and Find Full Text PDF

Wet synthesis approach afforded four new heteroleptic mononuclear neutral diamagnetic oxidovanadium(V) complexes, comprising salicylaldehyde-based 2-furoic acid hydrazones and a flavonol coligand of the general composition [VO(fla)(L-ONO)]. The complexes were comprehensively characterized, including chemical analysis, conductometry, infrared, electronic, and mass spectroscopy, as well as 1D H and proton-decoupled C(H) NMR spectroscopy, alongside extensive 2D HH COSY, HC HMQC, and HC HMBC NMR analyses. Additionally, the quantum chemical properties of the complexes were studied using Gaussian at the B3LYP, HF, and M062X levels on the 6-31++g(d,p) basis sets.

View Article and Find Full Text PDF

The development of coordination compounds with antineoplastic therapeutic properties is currently focused on non-covalent interactions with deoxyribonucleic acid (DNA). Additionally, the interaction profiles of these compounds with globular plasma proteins, particularly serum albumin, warrant thorough evaluation. In this study, we report on the interactions between biomolecules and complexes featuring hydrazone-type imine ligands coordinated with vanadium.

View Article and Find Full Text PDF

Asymmetric dinuclear, hexanuclear and octanuclear oxovanadium citrates with triazolates: novel mixed-ligands and mixed-valence complexes.

Dalton Trans

December 2023

State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

The triazolate-assisted asymmetric dinuclear oxovanadium(IV) citrate [VO(cit)(Hdatrz)]·5HO (1, Hcit = citric acid, Hdatrz = 1-1,2,4-triazole-3,5-diamine) and its additive salt [VO(cit)(Hdatrz)][VO(cit)]·2Hdatrz·9.5HO (2) and the polymerized hexanuclear product [VO(μ-O)(cit)(Hdatrz)]·4HO (3) have been isolated at different temperatures, respectively. Adduct 2 shows strong evidence for the conversion of a symmetric dinuclear oxovanadium(IV) citrate to a mixed-ligand asymmetric oxovanadium(IV) citrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!