A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of various Fe compounds on the bioavailability of Pb contained in orally ingested soils in mice: Mechanistic insights and health implications. | LitMetric

Effects of various Fe compounds on the bioavailability of Pb contained in orally ingested soils in mice: Mechanistic insights and health implications.

Environ Int

State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China. Electronic address:

Published: December 2022

AI Article Synopsis

  • Reducing lead (Pb) exposure from contaminated soils is critical for child health, and increasing dietary iron (Fe) may help lower Pb absorption while improving nutrition.
  • A study using mouse models found that the iron compound EDTA-FeNa was the most effective in reducing Pb bioavailability in various soils compared to nine other iron compounds tested.
  • EDTA-FeNa not only lowered Pb absorption significantly but also enhanced iron levels in important organs, showing promise as a potential intervention to manage human lead exposure.

Article Abstract

Reducing lead (Pb) exposure via oral ingestion of contaminated soils is highly relevant for child health. Elevating dietary micronutrient iron (Fe) intake can reduce Pb oral bioavailability while being beneficial for child nutritional health. However, the practical performance of various Fe compounds was not assessed. Here, based on mouse bioassays, ten Fe compounds applied to diets (100-800 mg Fe kg) reduced Pb oral relative bioavailability (RBA) in two soils variedly depending on Fe forms. EDTA-FeNa was most efficient, which reduced Pb-RBA in a soil from 79.5 ± 14.7 % to 23.1 ± 2.72 % (71 % lower) at 100 mg Fe kg in diet, more effective than other 9 compounds at equivalent or higher doses (3.6-68 % lower). When EDTA-FeNa, ferrous gluconate, ferric citrate, and ferrous bisglycinate were supplemented, Fe-Pb co-precipitation was not observed in the intestinal tract. EDTA-FeNa, ferrous gluconate, ferric citrate, and ferrous sulfate suppressed duodenal divalent metal transporter 1 (DMT1)mRNA relative expression similarly (27-68 % lower). In comparison, among ten compounds, EDTA-FeNa elevated Fe concentrations in mouse liver, kidney, and blood (1.50-2.69-fold higher) most efficiently, suggesting the most efficient Fe absorption that competed with Pb. In addition, EDTA was unique from other organic ligands, ingestion of which caused 12.0-fold higher Pb urinary excretion, decreasing Pb concentrations in mouse liver, kidney, and blood by 68-88 %. The two processes (Fe-Pb absorption competition and Pb urinary excretion with EDTA) interacted synergistically, leading to the lowest Pb absorption with EDTA-FeNa. The results provide evidence of a better inhibition of Pb absorption by EDTA-FeNa, highlighting that EDTA-FeNa may be the most appropriate supplement for intervention on human Pb exposure. Future researches are needed to assess the effectiveness of EDTA-FeNa for intervention on human Pb exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2022.107664DOI Listing

Publication Analysis

Top Keywords

ten compounds
8
edta-fena
8
edta-fena ferrous
8
ferrous gluconate
8
gluconate ferric
8
ferric citrate
8
citrate ferrous
8
concentrations mouse
8
mouse liver
8
liver kidney
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!