Pea protein is a growing plant-based protein ingredient. Pea proteins have characteristic undesirable flavors, leading to challenges in ingredient applications. The objective of this study was to characterize the flavor of pea proteins using descriptive sensory analysis and instrumental volatile compound analyses. Seven sensory attributes were identified in most pea proteins at variable intensities: cereal/grain, cardboard, green pea, beany/yellow pea, bitter, umami, and astringent. Other attributes, cheesy, doughy, sulfur, pyrazine, fecal, sweet aromatic and salty taste, were distinguishing flavors of some pea proteins (p < 0.05). The key aroma-active compounds in pea proteins were hexanal, heptanal, benzaldehyde, methional, 2-hexanone, 2-heptanone, 1-octen-3-one, 2-nonanone, 1-nonen-3-one, 1-pentanol, 2-pentyl furan, 2-isopropyl-3-methoxypyrazine, 2,5-dimethyl-3-(3-methylbutyl)-pyrazine and 2-methyl-isoborneol (present in all representative samples). Volatile compounds responsible for the majority of sample variation included 2-methyl butanal, (Z)-3-hexanal, (E,E)-2,4-decadienal, 1-octen-3-one, 2-decanone, 1-pentanol, 1-octen-3-ol, geosmin and 2,3-diethyl-5-methyl pyrazine (p < 0.05). This study can facilitate product development and flavor masking of various pea protein applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2022.134998 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Agricultural Biotechnology, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul 08826, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul 08826, Republic of Korea. Electronic address:
This study investigated the effects of oil addition on the physical and chemical properties of high-moisture texturized proteins (HMTPs), focusing on soy protein isolate (SPI) and pea protein isolate (PPI). Rheological analysis revealed contrasting behaviors: SPI exhibited decreased rheological parameters at low oil concentrations (1, 3 %), followed by a significant increase at higher concentrations (5, 10 %), whereas PPI showed a consistent decline across all oil concentrations. The superior emulsifying and gelling abilities of SPI resulted in stronger protein-protein interactions and greater hardness at higher oil concentrations.
View Article and Find Full Text PDFJ Pept Sci
March 2025
Department of Pharmaceutical Engineering, College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan Province, China.
Short neuropeptide F (sNPF) is an insect-specific neuropeptide named for its C-terminal phenylalanine. It consists of 6-19 amino acids with a conserved RLRFa structure, regulating feeding, growth, circadian rhythms, and water-salt balance in insects. Its receptor belongs to GPCR-As and binds sNPF to regulate the insect nervous system.
View Article and Find Full Text PDFJ Food Sci
January 2025
Department of Food Science, Cornell University, Ithaca, New York, USA.
This study was intended to provide a novel process that fills a knowledge gap in relation to the enhancement of pulses utilization. The primary goal was to develop an experimental framework for using a high-pressure supercritical fluid extruder (SCFX) as a continuous bioreactor to produce off-flavor reduced and functionally superior pulse flours and protein concentrates in a single step. The current study focused on using SCFX processing to remove off-flavor from pulse flour and protein concentrates, enhancing the quality, acceptability, and marketability of pulse-based products.
View Article and Find Full Text PDFDietary protein has been shown to impact long-term health outcomes differentially depending on its amount and source. It has been suggested that interactions of the gut microbiota with dietary proteins mediate some of the effects of dietary protein on health outcomes. However, it remains unclear what specific host responses drive the health effects of dietary proteins from different plant and animal sources.
View Article and Find Full Text PDFJ Food Sci
January 2025
Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Protein bar hardening negatively impacts shelf life, quality, and consumer acceptance. Although oxidation is known to negatively affect the flavor and texture of foods, the specific roles of lipid and protein oxidation in bar hardening have not been thoroughly investigated. Furthermore, most research has concentrated on dairy proteins, with a notable lack of studies addressing the hardening of plant-based protein bars.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!