Fused tricyclic hydronaphthofurans with multiple chiral centers are very important skeletons for constructing natural products; however, their synthesis is challenging, and a detailed understanding of the final formation mechanism remains elusive. In this work, density functional theory computations were employed to characterize rhodium-catalyzed [2+2+2] cycloaddition of enyne with terminal alkynes. The putative mechanism involves an initial ligand exchange, followed by oxidative cyclization, olefin insertion, and reductive elimination processes. Oxidative cyclization is shown to be the rate- and selectivity-determining step of the full chemical transformation, where the R substituent on terminal alkynes has a significant influence on the reaction selectivities. When R is an electron-donating group (OMe and Me), the -substituted tricyclic hydronaphthofurans () are predicted to be dominant; on the contrary, -substituted compounds emerge as the main products when R is an electron-withdrawing group (NO, CF, and CN). Computational predictions for selectivity are in good agreement with experimental product ratios. Free energy barriers of the rate-determining step for and are ∼22.3-23.6 kcal mol, which align well with their experimental yields of ∼79-92% at 313 K after 0.5 h. The results also accurately reproduce experimentally observed regio-, chemo-, and enantioselectivities, with steric hindrance as well as electronic properties of the substrate and ligand markedly influencing the reaction rates and selectivities. The influence of computational methods is also explored and discussed in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.2c01937DOI Listing

Publication Analysis

Top Keywords

tricyclic hydronaphthofurans
12
rates selectivities
8
rhodium-catalyzed [2+2+2]
8
fused tricyclic
8
density functional
8
functional theory
8
terminal alkynes
8
oxidative cyclization
8
electronic steric
4
steric control
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!