The interaction of {Cryptand(K)}(C) with Fe(CO) produced {Cryptand(K)}{Fe(CO)--,-C}·2.5CHCl () as the first negatively charged iron-bridged fullerene C dimer. The bridged iron atoms are coordinated to two 6-6 bonds of one C hexagon with short and long C(C)-Fe bonds with average lengths of 2.042(3) and 2.088(3) Å. Fullerenes are close to each other in the dimer with a center-to-center interfullerene distance of 10.02 Å. Optical spectra support the localization of negative electron density on the Fe(CO) units, which causes a 50 cm shift of the C≡O vibration bands to smaller wavenumbers, and the C cages. Dimers are diamagnetic and electron paramagnetic resonance silent and have a singlet ground state resulting from the formation of an Fe-Fe bond in the dimer with a length of 2.978(4) Å. According to density functional theory calculations, the excited triplet state is higher than the ground state by 6.5 kcal/mol. Compound shows a broad near-infrared band with a maximum at 970 nm, which is attributable to the charge transfer from the orbitals localized mainly on iron atoms to the C ligand.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.2c03595DOI Listing

Publication Analysis

Top Keywords

negatively charged
8
charged iron-bridged
8
iron-bridged fullerene
8
fullerene dimer
8
iron atoms
8
ground state
8
dimer
4
dimer {feco-μ-ηη-c}
4
{feco-μ-ηη-c} interaction
4
interaction {cryptandk}c
4

Similar Publications

Assembly of graphene oxide reduced graphene oxide in a phospholipid monolayer at air-water interfaces.

Phys Chem Chem Phys

January 2025

Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.

Graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), have propelled advancements in biosensor research owing to their unique physicochemical and electronic characteristics. To ensure their safe and effective utilization in biological environments, it is crucial to understand how these graphene-based nanomaterials (GNMs) interact with a biological milieu. The present study depicts GNM-induced structural changes in a self-assembled phospholipid monolayer formed at an air-water interface that can be considered to represent one of the leaflets of a cellular membrane.

View Article and Find Full Text PDF

Proteoglycans, key components of non-collagenous proteins in the bone matrix, attract water through their negatively charged glycosaminoglycan chains. Among these proteoglycans, biglycan (Bgn) and decorin (Dcn) are major subtypes, yet their distinct roles in bone remain largely elusive. In this study, we utilized single knockout (KO) mouse models and successfully generated double KO (dKO) models despite challenges with low yield.

View Article and Find Full Text PDF

Quaternized FeO@chitosan nanoparticles for efficient and selective isolation of heparin.

Int J Biol Macromol

December 2024

School of Chemistry and Chemical Engineering, Hunan Provincial Engineering Research Center for Functional Membranes, Hunan University of Science and Technology, Xiangtan 411201, China.

Heparin, a highly sulfated polysaccharide, is industrially produced for clinical applications. To realize highly efficient and selective adsorption of heparin from complex biological components (e.g.

View Article and Find Full Text PDF

Novel insights into released hydrochar particle derived from typical high nitrogen waste biomass: Special properties, microstructure and formation mechanism.

Waste Manag

December 2024

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain/Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China. Electronic address:

Hydrothermal carbonization (HTC) treatment is a promising method to transforming waste biomass into valuable resources and promoting waste recycling, especially for high nitrogen feedstocks. While small-sized hydrochar particle (≥0.45 μm) released from its solid product (hydrochar) application demonstrated large knowledge gaps compared with its original hydrochar and "secondary char" from model biomass (like glucose, sucrose, and starch).

View Article and Find Full Text PDF

The introduction of heterovalent metal ion doping in the lead (Pb) halide perovskites presents a novel opportunity to manipulate the electronic and ionic properties by introducing dopant charges and increasing the carrier concentration in single crystals. While previous studies have reported on the use of bismuth (Bi) doping in methylammonium lead tribromide (MAPbBr) to adjust the optical properties, the comprehensive impact of Bi doping on the structural and electronic properties of MAPbBr single crystals remains unexplored. This research, therefore, delves into the anomalous behavior of the structural, optical, and electrical properties of pristine and doped MAPbBr single crystals through a combination of experimental and computational studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!