In mixed-phase or ice clouds, ice can be formed through heterogeneous nucleation. A major type of ice-nucleating particle (INP) in the atmosphere are mineral dust particles. For mixed-phase clouds, the pH of water droplets can vary widely and influence ice nucleation by altering the surface of some INPs, including mineral dust. Kaolinite is a commonly occurring clay mineral, and laboratory experiments, as well as molecular dynamics (MD) simulations, have demonstrated its ice-nucleating efficiency at neutral pH. We examine the influence of pH on the ice-nucleating efficiency of kaolinite, in the immersion freezing mode, through both droplet freezing experiments and MD simulations. Droplet freezing experiments using KGa-1b kaolinite samples are reported under both acidic (HNO solutions) and basic (NaOH solutions) conditions, covering the measured pH range 0.18-13.26. These experiments show that the ice-nucleating efficiency of kaolinite is not significantly influenced by the presence of acid but is reduced in extremely basic conditions. We report MD simulations aimed at gaining a microscopic understanding of the pH dependence of ice nucleation by kaolinite. The Al(001), Si(001), and three edge surfaces of kaolinite are considered, but ice nucleation was observed only for the Al(001) surface. The hydroxy groups exposed on the Al(001) surface can be deprotonated in a basic solution or dual-protonated in an acidic solution, which can influence ice nucleation efficiency. The protonation state of the Al(001) surface for a particular pH can be estimated using previously measured p values. We find that the monoprotonated Al(001) surface expected to be stable at near-neutral pH is the most effective ice-nucleating surface. In MD simulations, the ice nucleation efficiency persists for dual-protonation but decreases significantly with increasing deprotonation, qualitatively consistent with the experimental observations. Taken together, our experimental and MD results for a wide range of pH values support the suggestion that the Al(001) surface may be important for ice nucleation by kaolinite. Additionally, the deprotonation of hydroxy groups on INP surfaces can have a significant effect on their ice-nucleating ability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.2c05323 | DOI Listing |
Environ Sci Technol
January 2025
Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa 236-0001, Japan.
Ice-nucleating particles (INPs) significantly influence aerosol-cloud precipitation interactions at regional and global scales. However, information regarding the concentrations and origins of INPs over the open ocean, particularly at high latitudes, remains insufficient due to access difficulties. In this study, we investigated the concentrations and origins of INPs over the western North Pacific to the Arctic Ocean through ship-borne observations conducted in the early autumn of 2016.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Aerosols containing biological material (i.e., bioaerosols) impact public health by transporting toxins, allergens, and diseases and impact the climate by nucleating ice crystals and cloud droplets.
View Article and Find Full Text PDFNano Lett
January 2025
"The Belt and Road Initiative" Advanced Materials International Joint Research Center of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
The microscopic mechanisms by which solutes modulate water freezing are fundamental for controlling the freezing of various environmental and cryobiotic systems. Although our understanding of the initiation mechanisms of pure water freezing is becoming clearer, the microscopic pictures regarding ice nucleation in complex systems such as solutions still rely on theory assumption and empirical formulation. Here, we experimentally demonstrate that solutes modulate water freezing through affecting critical ice nucleus formation.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Kowloon 999077, China.
Heterogeneous ice nucleation is a widespread phenomenon in nature. Despite extensive research on ice nucleation near biological antifreeze proteins, a probe for ice nucleation and growth processes at the atomic level is still lacking. Herein, we present simulation evidence of the heterogeneous ice nucleation process on the ice-binding surface (IBS) of the antifreeze protein (TmAFP).
View Article and Find Full Text PDFVet Res Commun
January 2025
Faculty of Agriculture, University Farm, Utsunomiya University, Tochigi, 321-4415, Japan.
The purpose of this study was to improve the quality of frozen-thawed canine spermatozoa through the optimization of glycerol concentration (GC) and freezing rate in the semen freezing protocol. Ejaculates from nine dogs were diluted with an extender containing 0%, 1.5%, 3%, 6%, or 9% glycerol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!