Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While the adult human heart is primarily composed of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells, the cellular composition during early development remains largely unknown. Reliable identification of fetal cardiac cell types using protein markers is critical to understand cardiac development and delineate the cellular composition of the developing human heart. This is the first study to use immunohistochemistry (IHC), flow cytometry and RT-PCR analyses to investigate the expression and specificity of commonly used cardiac cell markers in the early human fetal heart (8-12 post-conception weeks). The expression of previously reported protein markers for the detection of cardiomyocytes (Myosin Heavy Chain (MHC) and cardiac troponin I (cTnI), fibroblasts (DDR2, THY1, Vimentin), endothelial cells (CD31) and smooth muscle cells (α-SMA) were assessed. Two distinct populations of cTnI positive cells were identified through flow cytometry, with MHC positive cardiomyocytes showing high cTnI expression (cTnIHigh) while MHC negative non-myocytes showed lower cTnI expression (cTnILow). cTnI expression in non-myocytes was further confirmed by IHC and RT-PCR analyses, suggesting troponins are not cardiomyocyte-specific and may play distinct roles in non-muscle cells during early development. Vimentin (VIM) was expressed in cultured ventricular fibroblast populations and flow cytometry revealed VIMHigh and VIMLow cell populations in the fetal heart. MHC positive cardiomyocytes were VIMLow whilst CD31 positive endothelial cells were VIMHigh. Using markers investigated within this study, we characterised fetal human cardiac populations and estimate that 75-80% of fetal cardiac cells are cardiomyocytes and are MHC+/cTnIHigh/VIMLow, whilst non-myocytes comprise 20-25% of total cells and are MHC-/cTnILow/VIMHigh, with CD31+ endothelial cells comprising ~9% of this population. These findings show distinct differences from those reported for adult heart.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710754 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259477 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!