Phytochemical analyses of guava leaf extracts, commonly applied in traditional medicine, revealed the presence of several bioactive polyphenols. In this study, we optimized the enrichment of total polyphenol from Guava leaf ethanolic extract (GEE) using six macroporous adsorptive resins (MAR) including AB8, D101, X5, ADS17, S400, and AD7. Also investigated are the contributions of adsorption time, extract concentration, pH, elution time, and eluent ethanol concentrations on the polyphenol enrichment potential of MAR. The antioxidant and anti-hemolytic properties of the crude and polyphenol-rich extracts were determined. Our results indicate that treatment of GEE extract with AB8 MAR at a concentration of 15 mg GEE/g resin, adsorption time of 45 min, elution time of 40 min, and eluent ethanol concentration of 50% (v/v) improved the flavonoids and phenol concentration of GEE by 2 and 2.5 folds respectively. The DPPH radical scavenging, ferric reducing ability of the plasma (FRAP), anti-hemolytic and anti-peroxidation activity of the resultant polyphenol-rich extracts improved by 1.5, 1.6, 1.4, and 1.88 folds respectively, when compared to the crude extract. Our work shows that the MAR-assisted enrichment operation is a rapid, feasible, and economical strategy for enriching bioactive polyphenols from guava leaf extracts.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10826068.2022.2150932DOI Listing

Publication Analysis

Top Keywords

guava leaf
12
macroporous adsorptive
8
antioxidant anti-hemolytic
8
anti-hemolytic properties
8
leaf extracts
8
bioactive polyphenols
8
adsorption time
8
elution time
8
eluent ethanol
8
polyphenol-rich extracts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!