Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sepsis is a leading cause of acute kidney injury (AKI), and the pathogenesis of septic AKI remains largely unclear. Parkinson disease protein 7 (PARK7) is a protein of multiple functions that was recently implicated in septic AKI, but the underlying mechanism is unknown. In the present study, we determined the role of PARK7 in septic AKI and further explored the underlying mechanism in lipopolysaccharide (LPS)-induced endotoxic models. PARK7 was induced both in vivo and in vitro following LPS treatment. Compared with wild-type (WT) mice, Park7-deficient mice experienced aggravated kidney tissue damage and dysfunction, and enhanced tubular apoptosis and inflammation following LPS treatment. Consistently, LPS-induced apoptosis and inflammation in renal tubular cells in vitro were exacerbated by Park7 knockdown, whereas they were alleviated by PARK7 overexpression. Mechanistically, silencing Park7 facilitated nuclear translocation and phosphorylation of p65 (a key component of the nuclear factor kappa B [NF-κB] complex) during LPS treatment, whereas PARK7 overexpression partially prevented these changes. Moreover, we detected PARK7 interaction with p65 in the cytoplasm in renal tubular cells, which was enhanced by LPS treatment. Collectively, these findings suggest that PARK7 is induced to protect against septic AKI through suppressing NF-κB signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/CS20220493 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!