Sepsis is a leading cause of acute kidney injury (AKI), and the pathogenesis of septic AKI remains largely unclear. Parkinson disease protein 7 (PARK7) is a protein of multiple functions that was recently implicated in septic AKI, but the underlying mechanism is unknown. In the present study, we determined the role of PARK7 in septic AKI and further explored the underlying mechanism in lipopolysaccharide (LPS)-induced endotoxic models. PARK7 was induced both in vivo and in vitro following LPS treatment. Compared with wild-type (WT) mice, Park7-deficient mice experienced aggravated kidney tissue damage and dysfunction, and enhanced tubular apoptosis and inflammation following LPS treatment. Consistently, LPS-induced apoptosis and inflammation in renal tubular cells in vitro were exacerbated by Park7 knockdown, whereas they were alleviated by PARK7 overexpression. Mechanistically, silencing Park7 facilitated nuclear translocation and phosphorylation of p65 (a key component of the nuclear factor kappa B [NF-κB] complex) during LPS treatment, whereas PARK7 overexpression partially prevented these changes. Moreover, we detected PARK7 interaction with p65 in the cytoplasm in renal tubular cells, which was enhanced by LPS treatment. Collectively, these findings suggest that PARK7 is induced to protect against septic AKI through suppressing NF-κB signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/CS20220493 | DOI Listing |
Sci Rep
December 2024
Internal Medicine Department - Nephrology, Botucatu School of Medicine, University São Paulo State-UNESP, District of Rubiao Junior, Botucatu, Sao Paulo, Brazil.
The pharmacokinetics and pharmacodynamics (PK/PD) of vancomycin change during HD, increasing the risk of subtherapeutic concentrations. The aim of this study was to evaluate during and after the conventional and prolonged hemodialysis sessions to identify the possible risk of the patient remaining without adequate antimicrobial coverage during therapy. Randomized, non-blind clinical trial, including critically ill adults with septic AKI on conventional (4 h) and prolonged HD (6 and 10 h) and using vancomycin for at least 72 h.
View Article and Find Full Text PDFCureus
November 2024
Internal Medicine, Robert Wood Johnson (RWJ) Barnabas Health, Long Branch, USA.
Background: Septic shock is defined as sepsis with hypotension requiring vasopressors to maintain a mean arterial pressure above 65 mmHg and having a serum lactate level of more than 2 mmol/L despite adequate volume resuscitation as per the Sepsis-3 criteria. Continuous renal replacement therapy (CRRT) is commonly utilized in septic shock patients for the treatment of acute kidney injury as well as for modulating immune response and maintaining hemodynamic stability.
Methods: We looked at the National Inpatient Sample database in 2019.
Clin Sci (Lond)
December 2024
University of Utah Health, Salt Lake City, Utah, United States.
Septic acute kidney injury (AKI) is an important risk factor for developing chronic kidney disease (CKD). Hu antigen R (HuR) is recognized as a crucial modulator in inflammation. We hypothesized that elevated HuR contributes to the transition from septic AKI to CKD by promoting persistent inflammation and fibrosis, and inhibition of HuR may reverse septic kidney injury.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Department of Emergency Medicine, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
Background: Sepsis is a systemic inflammatory response syndrome, with sepsis-associated acute kidney injury (SA-AKI) being a common complication. Insulin resistance (IR) is closely related to the stress response, inflammatory response, and severity of critical illness. The triglyceride-glucose body mass index (TyG-BMI) is a valuable tool for assessing IR.
View Article and Find Full Text PDFBMC Infect Dis
December 2024
Department of Intensive Care Medicine, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China.
Background: Predicting mortality in sepsis-related acute kidney injury facilitates early data-driven treatment decisions. Machine learning is predicting mortality in S-AKI in a growing number of studies. Therefore, we conducted this systematic review and meta-analysis to investigate the predictive value of machine learning for mortality in patients with septic acute kidney injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!