Rationally designing ternary transition-metal phosphides (TMPs) for the hydrogen evolution reaction (HER) is desirable but remains a significant challenge. Herein, ternary FeCoNiP encapsulated in a porous carbon shell, coupled with N-doped carbon nanotubes (FeCoNiP@NCNTs) are synthesized a simple pyrolysis-phosphatization strategy derived from FeCoNi-MOF-100@dicyandiamide. Because Co/Ni enters the FeP lattice, FeCoNiP@NCNTs show a favorable catalytic performance towards the HER with low overpotential values of 86.7 and 233.5 mV at 10 mA cm in acidic and alkaline media, respectively, surpassing the HER performance of FeP@NCNTs, FeCoP@NCNTs, and FeNiP@NCNTs. Impressively, FeCoNiP@NCNTs display adequate acid-resistance capacity during the HER process, with nearly negligible decay due to the thin graphitized carbon shell structure with a thickness of 11.5-20.3 nm. The results of experiments, structural characterization, and density functional theory (DFT) calculations demonstrate that Co/Ni co-doping can modulate the adsorption and dissociation processes of H and downshift the d-band center of FeP. This work proposes a strategy for fabricating ternary TMP catalysts with heterogeneous structures for the HER.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt03083gDOI Listing

Publication Analysis

Top Keywords

hydrogen evolution
8
carbon shell
8
modulating electronic
4
electronic structure
4
ternary
4
structure ternary
4
ternary transition
4
transition metal
4
metal phosphide
4
phosphide enhanced
4

Similar Publications

Enhancing the decomposition rate of ammonium perchlorate (AP), the most common oxidizer in solid propellants, is important for improving propellant performance. Metal organic frameworks (MOFs) have been developed as key materials for catalyzing AP decomposition, as they can achieve good dispersion of active sites through in-situ decomposition. Despite having considerable potential, the structural transformation process and catalytic performance of MOFs in AP decomposition are still unclear, which seriously hinders their application in the field of AP decomposition.

View Article and Find Full Text PDF

Membrane-assisted direct seawater splitting (DSS) technologies are actively studied as a promising route to produce green hydrogen (H2), whereas the indispensable use of supporting electrolytes that help to extract water and provide electrochemically-accelerated reaction media results in a severe energy penalty, consuming up to 12.5% of energy input when using a typical KOH electrolyte. We bypass this issue by designing a zero-gap electrolyzer configuration based on the integration of cation exchange membrane and bipolar membrane assemblies, which protects stable DSS operation against the precipitates and corrosion in the absence of additional supporting electrolytes.

View Article and Find Full Text PDF

A Stable Solid-Electrolyte Interphase Constructed by a Nucleophilic Molecule Additive for the Zn Anode with High Utilization and Efficiency.

ACS Appl Mater Interfaces

January 2025

College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu 215006, China.

The solid-electrolyte interphase (SEI) strongly determines the stability and reversibility of aqueous Zn-ion batteries (AZIBs). In traditional electrolytes, the nonuniform SEI layer induced by severe parasitic reactions, such as the hydrogen evolution reaction (HER), will exacerbate the side reactions on Zn anodes, thus leading to low zinc utilization ratios (ZURs). Herein, we propose to use methoxy ethylamine (MOEA) as a nucleophilic additive, which has a stronger nucleophilic characteristic than water, with the advantage of an abundance of nucleophilic atoms.

View Article and Find Full Text PDF

As freshwater lakes undergo rapid anthropogenic change, long-term studies reveal key microbial dynamics, evolutionary shifts and biogeochemical interactions, yet the vital role of viruses remains overlooked. Here, leveraging a 20 year time series from Lake Mendota, WI, USA, we characterized 1.3 million viral genomes across time, seasonality and environmental factors.

View Article and Find Full Text PDF

Promoting defect formation and inhibiting hydrogen evolution by S-doping NiFe layered double hydroxide for electrocatalytic reduction of nitrate to ammonia.

Water Res

December 2024

Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. Electronic address:

Activation of HO cleavage for H* production by defect engineering eliminates the insufficient supply of protons in the NORR process under neutral conditions. However, it remains challenging to precisely control the defect formation for optimizing the equilibrium between H* production and H* binding. Here, we propose a strategy to boost defect generation through S-doping induced NiFe-LDH lattice distortion, and successfully optimize the balance of H* production and binding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!