Ovarian cancer (OC) is a gynecological cancer with high mortality. OC-derived exosomal circRNAs can regulate angiogenesis. This study aims to explore the role and mechanism of exosomal circRNA nuclear factor I X (CircNFIX) derived from OC cells in angiogenesis. Quantitative real-time polymerase chain reaction was employed to evaluate the levels of circNFIX, miR-518a-3p, and tripartite motif protein 44 (TRIM44) in OC and adjacent tissues. Exosomes from the ovarian surface epithelial cell (HOSEpiC) and OC cells (SKOV3 or OVCAR3) were isolated by differential centrifugation. Exosomes were cocultured with the human umbilical vein endothelial cells (HUVECs). The angiogenesis capacity was analyzed by Tube formation assay. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and Transwell assays were used to determine the cell viability and migration ability. The dual-luciferase report, RNA immunoprecipitation (RIP), and RNA pull-down assays were applied to validate the gene's interaction. CircNFIX and TRIM44 expression were higher and miR-518a-3p was lower in OC tissues than in the adjacent tissues. Upregulated circNFIX and TRIM44 were significantly correlated with the tumor size and International Federation of Gynecology and Obstetrics (FIGO) stage of OC patients. HUVECs treated OC-derived exosomes had higher proliferation, migration, and angiogenesis capacities than the control group. While OC-derived exosomal circNFIX silencing restrained HUVECs' proliferation, migration, and angiogenesis, compared with the OC-derived exosomes group. OC-derived exosomal circNFIX positively regulated TRIM44 expression by targeting miR-518a-3p in HUVECs. OC-derived exosomal circNFIX promoted angiogenesis by regulating the Janus-activated kinase/signal transducer and activator of transcription 1 (JAK/STAT1) pathway via miR-518a-3p/TRIM44 axis in HUVECs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/kjm2.12615 | DOI Listing |
Kaohsiung J Med Sci
January 2023
Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
Ovarian cancer (OC) is a gynecological cancer with high mortality. OC-derived exosomal circRNAs can regulate angiogenesis. This study aims to explore the role and mechanism of exosomal circRNA nuclear factor I X (CircNFIX) derived from OC cells in angiogenesis.
View Article and Find Full Text PDFCancer Lett
May 2022
Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, PR China. Electronic address:
Cancer Lett
June 2020
Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, People's Republic of China. Electronic address:
Development of chemotherapy resistance remains a major obstacle for glioma management. Exosome-mediated transfer of circular RNAs (circRNAs) are being found to have relevance to many human cancers, including glioma. The purpose of this study is to explore the effect and underlying mechanism of exosomal circRNA nuclear factor I X (CircNFIX) on temozolomide (TMZ) chemoresistance in glioma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!