Coupled plasmons in aluminum nanoparticle superclusters.

Phys Chem Chem Phys

Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science And Technology, Doha Area, 7th Ring Road, P.O. Box 27235, Kuwait.

Published: December 2022

Metallic nanoparticles can self-assemble into highly ordered superclusters for potential applications in optics and catalysis. Here, using first-principles quantum mechanical calculations, we investigate plasmon coupling in superclusters made of aluminum nanoparticles. More specifically, we study/compare the plasmon coupling in close-pack FCC (face-centered-cubic) and non-close-pack BCC (body-centered-cubic) superclusters. We demonstrate that the optical properties of these clusters can be fine-tuned with respect to the packing arrangement. As a key result of this work, plasmon coupling is found to be enhanced (diminished) in FCC (BCC) superclusters due to constructive (destructive) plasmon coupling. Our quantum calculations would help in the design of Al-based superclusters beneficial for plasmonics applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp04298cDOI Listing

Publication Analysis

Top Keywords

plasmon coupling
16
superclusters
6
coupled plasmons
4
plasmons aluminum
4
aluminum nanoparticle
4
nanoparticle superclusters
4
superclusters metallic
4
metallic nanoparticles
4
nanoparticles self-assemble
4
self-assemble highly
4

Similar Publications

The development of efficient and sustainable photocatalysts for wastewater treatment remains a critical challenge in environmental remediation. In this study, a ternary photocatalyst, Cu-CuO/g-CN, was synthesized by embedding copper-copper oxide heterostructural nanocrystals onto g-CN nanosheets via a simple deposition method. Structural and optical characterization confirmed the successful formation of the heterostructure, which combines the narrow bandgap of CuO, the high stability of g-CN, and the surface plasmon resonance (SPR) effect of Cu nanoparticles.

View Article and Find Full Text PDF

Plasmonic nanomaterials are effective photoacoustic (PA) contrast agents with diverse biomedical applications. While silica coatings on gold nanoparticles (AuNPs) have been demonstrated to increase PA efficiency, the underlying mechanism remains elusive. Here, we systematically investigated the impact of silica coatings on PA generation under picosecond and nanosecond laser pulses.

View Article and Find Full Text PDF

Precise Sizing and Collision Detection of Functional Nanoparticles by Deep Learning Empowered Plasmonic Microscopy.

Adv Sci (Weinh)

January 2025

Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.

Single nanoparticle analysis is crucial for various applications in biology, materials, and energy. However, precisely profiling and monitoring weakly scattering nanoparticles remains challenging. Here, it is demonstrated that deep learning-empowered plasmonic microscopy (Deep-SM) enables precise sizing and collision detection of functional chemical and biological nanoparticles.

View Article and Find Full Text PDF

Copper nanoparticles (NPs) can be coupled with cuprous oxide, combining photoelectrocatalytic properties with a broad-range optical absorption. In the present study, we aimed to correlate changes in morphology, electronic structure and plasmonic properties of Cu NPs at different stages of oxidation. We demonstrated the ability to monitor the oxidation of NPs at the nanometric level using STEM-EELS spectral maps, which were analyzed with machine learning algorithms.

View Article and Find Full Text PDF

This paper is devoted to the investigation of the plasmonic effect of metal nanoparticles (NPs) formed on the surface of the YAG: Bi, Ce, Yb phosphors in a temperature range between 4 and 300 K. Combination of a thin conversion layer with silver plasmonic nanostructures leads to increase of sensitizer absorption and emission efficiency. Enhancement of Bi luminescence in YAG epitaxial films with Ag NPs was observed upon cooling the samples below 200 K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!