We have investigated the MnPtAl Heulser alloy to unravel its structural, magnetic, calorimetric and electronic structure properties. At room temperature, the alloy crystallizes in a hexagonal structure. Magnetization reveals a weak martensitic transition at 307 K, followed by a long range ferrimagnetic transition at 90 K. Griffiths phase-like signature and positive Weiss temperature in dc-magnetization, isothermal magnetic hysteresis loops and a frequency-independent peak confirm a nearly compensated ferrimagnetic order of MnPtAl. The theoretical electronic structure calculations also reveal the ferrimagnetic ground state of MnPtAl and Mn ions (occupying different sites) with a very small total magnetic moment. A giant exchange bias field of 2.73 kOe, at a temperature of 3 K and a cooling field of 70 kOe, has been estimated and is attributed to the unidirectional anisotropy associated with possible ferromagnetic clusters formed by the field cooling process in the ferrimagnetic matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp02643kDOI Listing

Publication Analysis

Top Keywords

compensated ferrimagnetic
8
giant exchange
8
exchange bias
8
electronic structure
8
ferrimagnetic behaviour
4
behaviour giant
4
bias hexagonal
4
mnptal
4
hexagonal mnptal
4
mnptal experimental
4

Similar Publications

Magnetic Domain Wall Energy Landscape Engineering in a Ferrimagnet.

Nano Lett

December 2024

Tianjin Key Laboratory for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, Nankai University, 300350 Tianjin, China.

Architectures based on a magnetic domain wall (DW) can store and process information at a high speed in a nonvolatile manner with ultra-low power consumption. Recently, transition-metal rare earth metal alloy-based ferrimagnets have attracted a considerable amount of attention for the ultrafast current-driven DW motion. However, the high-speed DW motion is subject to film inhomogeneity and device edge defects, causing challenges in controlling the DW motion and hindering practical application.

View Article and Find Full Text PDF

New unconventional compensated magnets with a p-wave spin polarization protected by a composite time-reversal translation symmetry have been proposed in the wake of altermagnets. To facilitate the experimental discovery and applications of these unconventional magnets, we construct an effective analytical model. The effective model is based on a minimal tight-binding model for unconventional p-wave magnets that clarifies the relation to other magnets with p-wave spin-polarized bands.

View Article and Find Full Text PDF

Nonrelativistic Spin Splitting at the Brillouin Zone Center in Compensated Magnets.

Phys Rev Lett

November 2024

Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.

The nonrelativistic spin-splitting (NRSS) of electronic bands in "altermagnets" has sparked renewed interest in antiferromagnets (AFMs) that have no net magnetization. However, altermagnets with collinear and compensated magnetism are not the only type of NRSS AFMs. In this Letter, we identify the symmetry conditions and characteristic signatures of a distinct group of NRSS AFMs that go beyond the description of altermagnets.

View Article and Find Full Text PDF

Rare-earth-transition-metal (RE-TM) ferrimagnets are excellent materials for spin encode/decode operations via spin transport in nonmagnetic regions. This superior performance stems from two key factors. First, the antiferromagnetic coupling between RE4f and TM3d sublattices reduces both the spin-transfer-torque switching time and inter-device magnetic-coupling.

View Article and Find Full Text PDF

Electrical Excitation and Detection of Chiral Magnons in a Compensated Ferrimagnetic Insulator.

Phys Rev Lett

October 2024

State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China.

Magnon chirality refers to the precessional handedness of magnetization around the external magnetic field, which is fixed as right-handed in ferromagnets. Compensated ferrimagnets accommodate parallel and antiparallel configurations of net magnetization and angular momentum, and thus serve as an ideal platform for studying magnon chirality. Through performing spin-torque ferromagnetic resonance experiments, we experimentally study the reversal of low-frequency magnon chirality across the magnetization and angular momentum compensation temperatures in a Gd_{3}Fe_{5}O_{12}/Pt bilayer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!