Multi-component nano-oxide composite materials may present special synergistic effects as anode materials for lithium-ion batteries. Mesoporous β-MnO/MnO composite nanotubes are built here controlling the deoxidation process of carbon-coating to induce a partial phase transition of high valence manganese dioxides. Compared to single β-MnO nanotubes or MnO@C nanotubes, the mesoporous β-MnO/MnO@C composite nanotubes exhibit superior electrochemical properties. 679 mA h g of reversible specific capacity and 86% of capacity retention after 1000 cycles at 1 A g current density are obtained. The excellent performance is attributed to the unique multiple phase transitions regulation phenomena of manganese oxide occurring in the β-MnO/MnO composite material during the electrochemical processes, which significantly extends the cycle life of the β-MnO/MnO composite material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt03231g | DOI Listing |
Nanomaterials (Basel)
December 2024
Institute of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
The electrochemical conversion of CO into high value-added carbon materials by molten salt electrolysis offers a promising solution for reducing carbon dioxide emissions. This study focuses on investigating the influence of molten salt composition on the structure of CO direct electroreduction carbon products in chloride molten salt systems. Using CaO as a CO absorber, the adsorption principle of CO in LiCl-CaCl, LiCl-CaCl-NaCl and LiCl-CaCl-KCl molten salts was discussed, and the reasons for the different morphologies and structures of carbon products were analyzed, and it was found that the electrolytic efficiency of the whole process exceeded 85%.
View Article and Find Full Text PDF3 Biotech
February 2025
Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai, Tamil Nadu 600034 India.
Unlabelled: The persistent challenge posed by antibiotic-resistant bacteria and tuberculosis necessitates innovative approaches to antimicrobial treatment. This study explores the synthesis and characterization of NiZrO₃ nanoparticles integrated with graphene nanoplatelets (GNP) and multi-walled carbon nanotubes (MWCNT), using a microwave-assisted green synthesis route, employing fenugreek () seed extract as a gelling agent. The synthesised nanocomposites were systematically analyzed using XRD, FT-IR, Raman spectroscopy, HR-SEM and HR TEM analysis to assess structural, optical, and morphological properties.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
Bone is a dynamic tissue that serves several purposes in the human body, including storing calcium, forming blood cells, and protecting and supporting the body's organs. Alkaline phosphatase (ALP) is secreted into the circulation by osteoblasts, the cells responsible for making bone. It attaches to the surface of osteoblast cells or matrix vesicles.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China.
A styrene-glycidylmethacrylate-1-allyl-3-vinylimidazole epoxy functionalized ionomer (EFI) was synthesized, and the EFI and carbon nanotubes (CNTs) were co-introduced into poly(lactide)/poly(butylene-adipate-co-terephtalate) (PLA/PBAT) blends to fabricate high performance composites with excellent mechanical properties, fatigue-resistance and dielectric properties. It is revealed that EFI can improve the interaction force between PLA and PBAT by inducing the interfacial crosslink reaction, thereby improving the melt strength of the samples. EFI can also refine the dispersion of CNT in the composites owing to the non-covalent force between EFI and CNT, promote the formation of filler network inside composites, which is demonstrated by DMA and rheological test results.
View Article and Find Full Text PDFTalanta
January 2025
State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
Research on metasurface sensors with high sensitivity, strong specificity, good biocompatibility and strong integration is the key to promote the application of terahertz waves in the field of biomedical detection. However, traditional metallic terahertz metasurfaces have shortcomings such as poor biocompatibility and large ohmic loss in the terahertz frequency band, impeding their further application and integration in the field of biosensing detection. Here, we overcome this challenge by proposing a high-performance terahertz metasurface based on gold nanoparticles and single-walled carbon nanotubes composite film.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!