Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Estimating a patient-specific computational model's parameters relies on data that is often unreliable and ill-suited for a deterministic approach. We develop an optimization-based uncertainty quantification framework for probabilistic model tuning that discovers model inputs distributions that generate target output distributions. Probabilistic sampling is performed using a surrogate model for computational efficiency, and a general distribution parameterization is used to describe each input. The approach is tested on seven patient-specific modeling examples using CircAdapt, a cardiovascular circulatory model. Six examples are synthetic, aiming to match the output distributions generated using known reference input data distributions, while the seventh example uses real-world patient data for the output distributions. Our results demonstrate the accurate reproduction of the target output distributions, with a correct recreation of the reference inputs for the six synthetic examples. Our proposed approach is suitable for determining the parameter distributions of patient-specific models with uncertain data and can be used to gain insights into the sensitivity of the model parameters to the measured data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cnm.3665 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!