An injectable CRISPR therapy instructs B cells to produce anti-HIV antibodies.

Synth Biol (Oxf)

Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA.

Published: November 2022

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692189PMC
http://dx.doi.org/10.1093/synbio/ysac027DOI Listing

Publication Analysis

Top Keywords

injectable crispr therapy
4
therapy instructs
4
instructs cells
4
cells produce
4
produce anti-hiv
4
anti-hiv antibodies
4
injectable crispr
1
instructs
1
cells
1
produce
1

Similar Publications

Silk Protein Gene Engineering and Its Applications: Recent Advances in Biomedicine Driven by Molecular Biotechnology.

Drug Des Devel Ther

January 2025

State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, People's Republic of China.

Silk protein, as a natural polymer material with unique structures and properties, exhibits tremendous potential in the biomedical field. Given the limited production and restricted properties of natural silk proteins, molecular biotechnology has been extensively applied in silk protein genetic engineering to produce novel silk proteins with specific properties. This review outlines the roles of major model organisms, such as silkworms and spiders, in silk protein production, and provides a detailed introduction to the applications of gene editing technologies (eg, CRISPR-Cas9), transgenic expression technologies, and synthetic biology techniques in silk protein genetic engineering.

View Article and Find Full Text PDF

Ferroptosis, an iron-dependent form of programmed cell death characterized by excessive lipid hydroperoxides accumulation, emerges as a promising target in cancer therapy. Among the solute carrier (SLC) superfamily, the cystine/glutamate transporter system antiporter components SLC3A2 and SLC7A11 are known to regulate ferroptosis by facilitating cystine import for ferroptosis inhibition. However, the contribution of additional SLC superfamily members to ferroptosis remains poorly understood.

View Article and Find Full Text PDF

During normal cellular homeostasis, unfolded and mislocalized proteins are recognized and removed, preventing the build-up of toxic byproducts. When protein homeostasis is perturbed during ageing, neurodegeneration or cellular stress, proteins can accumulate several forms of chemical damage through reactive metabolites. Such modifications have been proposed to trigger the selective removal of chemically marked proteins; however, identifying modifications that are sufficient to induce protein degradation has remained challenging.

View Article and Find Full Text PDF

Blood transfusion plays a vital role in modern medicine, but frequent shortages occur. Ex vivo manufacturing of red blood cells (RBCs) from universal donor cells offers a potential solution, yet the high cost of recombinant cytokines remains a barrier. Erythropoietin (EPO) signaling is crucial for RBC development, and EPO is among the most expensive media components.

View Article and Find Full Text PDF

Glucocorticoid pre-administration improves LNP-mRNA mediated protein replacement and genome editing therapies.

Int J Pharm

January 2025

Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China. Electronic address:

Lipid nanoparticles (LNPs) are among the most promising non-viral mRNA delivery systems for gene therapeutic applications. However, the in vivo delivery of LNP-mRNA remains challenging due to multiple intrinsic barriers that hinder LNPs from reaching their target cells. In this study, we sought to enhance LNP delivery by manipulating intrinsic regulatory mechanisms involved in their metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!