Three-dimensional models are used to guide residents and physicians in accessing specific anatomical areas and types of fractures and better diagnosis of anomalies. These models are useful for illuminating complex anatomical areas, such as orbit, especially limited space with sensitive access. The aim of this study was to design a three-dimensional visualization educational modeling for ophthalmology residents' training. This study is a product-oriented application that uses radiological images of anatomy, anomalies, and orbital fractures based on actual CT scans of patients. These CT scans were carefully selected from the Picture Archiving and Communication System of Ghaem Hospital of Mashhad University of Medical Sciences. To produce twelve 3D models, the CT scan files were converted to 3D printer output. Then, the models were presented to residents at a training session by an ophthalmologist. These models created all major fractures associated with the orbit area and most disorders, anomalies of this area and several normal anatomical. The features of 3D models were mentioned. The strengths and weaknesses of the educational modeling, the level of satisfaction with the use of three-dimensional models, suggestions and criticisms were assessed qualitatively by the residents. Satisfaction was reported 100% by residents. Suggestions for future 3D models were presented, and the only criticism was fear of exams and grades. Real-size 3D modeling help to understand the spatial and mental imagery of anatomy and orbital pathology and to touch different anatomical areas creates a clear image in the minds of residents, especially in the orbit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700427PMC
http://dx.doi.org/10.47176/mjiri.36.115DOI Listing

Publication Analysis

Top Keywords

educational modeling
12
anatomical areas
12
three-dimensional visualization
8
visualization educational
8
modeling ophthalmology
8
ophthalmology residents'
8
residents' training
8
models
8
three-dimensional models
8
models presented
8

Similar Publications

Objective: Orthopedic residents are tasked with rapidly acquiring clinical and surgical skills, especially during their PGY-1 year. However, resource constraints and other factors frequently cause skills training to fall short of established guidelines. We aimed to design and evaluate a cross-institutional, month-long curriculum aimed at pooling resources to optimize training.

View Article and Find Full Text PDF

Evidence for a metal-bosonic insulator-superconductor transition in compressed sulfur.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

The abrupt drop of resistance to zero at a critical temperature is a key signature of the current paradigm of the metal-superconductor transition. However, the emergence of an intermediate bosonic insulating state characterized by a resistance peak preceding the onset of the superconducting transition has challenged this traditional understanding. Notably, this phenomenon has been predominantly observed in disordered or chemically doped low-dimensional systems, raising intriguing questions about the generality of the effect and its underlying fundamental physics.

View Article and Find Full Text PDF

Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.

View Article and Find Full Text PDF

The "" under this Perspective underline the importance of interdisciplinary collaboration and partnerships across several disciplines, such as medical science and technology, medicine, bioengineering, and computational approaches, in bridging the gap between research, manufacturing, and clinical applications. Effective communication is key to bridging team gaps, enhancing trust, and resolving conflicts, thereby fostering teamwork and individual growth toward shared goals. Drawing from the success of the COVID-19 vaccine development, we advocate the application of similar collaborative models in other complex health areas such as nanomedicine and biomedical engineering.

View Article and Find Full Text PDF

Transfer learning aims to integrate useful information from multi-source datasets to improve the learning performance of target data. This can be effectively applied in genomics when we learn the gene associations in a target tissue, and data from other tissues can be integrated. However, heavy-tail distribution and outliers are common in genomics data, which poses challenges to the effectiveness of current transfer learning approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!