Background: Gastric cancer (GC) is a commonly occurring human malignancy. The 5-fluorouracil (5-Fu) is a first-line anti-gastric cancer agent. However, a large number of GC patients developed 5-Fu resistance. Currently, the roles and molecular mechanisms of the lncRNA-SNHG16-modulated 5-Fu resistance in gastric cancer remain elusive.

Methods: Expressions of lncRNA, miRNA, and mRNA were detected by qRT-PCR and Western blot. RNA-RNA interaction was examined by RNA pull-down and luciferase assay. Cell viability and apoptosis rate under 5-Fu treatments were determined by MTT assay and Annexin V assay. The glycolysis rate of GC cells was evaluated by glucose uptake and ECAR.

Results: Here, we report that SNHG16 as well as PTBP1, which is an RNA-binding protein, are positively associated with 5-Fu resistance to gastric cancer. SNHG16 and PTBP1 were significantly upregulated in gastric tumors and cell lines. Silencing SNHG16 or PTBP1 effectively sensitized GC cells to 5-Fu. Furthermore, glucose metabolism was remarkedly elevated in 5-Fu-resistant GC cells. Under low glucose supply, 5-Fu-resistant cells displayed higher vulnerability than parental GC cells. Bioinformatic analysis and luciferase assay demonstrated that SNHG16 downregulated miR-506-3p by sponging it to form a ceRNA network. We identified PTBP1 as a direct target of miR-506-3p in GC cells. RNA-seq results unveiled that PTBP1 positively regulated expressions of multiple glycolysis enzymes, including GLUT1, HK2, and LDHA. Bioinformatic analysis illustrated the 3'UTRs of glycolysis enzymes contained multiple PTBP1 binding sites, which were further verified by RNA pull-down and RNA immunoprecipitation assays. Consequently, we demonstrated that PTBP1 upregulated the mRNAs of glycolysis enzymes via promoting their mRNA stabilities. Finally, in vivo xenograft experiments validated that blocking the SNHG16-mediated miR-506-3p-PTBP1 axis effectively limited 5-Fu-resistant GC cell originated-xenograft tumor growth under 5-Fu treatments.

Conclusions: Our study demonstrates molecular mechanisms of the SNHG16-mediated 5-Fu resistance of GC cells through modulating the miR-506-3p-PTBP1-glucose metabolism axis, presenting a promising approach for anti-chemoresistance therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707261PMC
http://dx.doi.org/10.1186/s40170-022-00293-wDOI Listing

Publication Analysis

Top Keywords

gastric cancer
16
5-fu resistance
16
glycolysis enzymes
12
5-fu
9
cells
8
cells 5-fu
8
glucose metabolism
8
molecular mechanisms
8
resistance gastric
8
rna pull-down
8

Similar Publications

Role of P2X7 receptor in the progression and clinicopathological characteristics of gastric cancer.

Sci Rep

December 2024

Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang city, Jiangxi province, China.

P2X7 receptor (P2X7R) plays a role in regulating tumor progression, but it is unclear whether P2X7R affects the pathological characteristics of patients with gastric cancer and the activity of gastric cancer cells. Therefore, this study preliminarily investigated the relationship between P2X7R and clinicopathological features of patients with gastric cancer, and further explored the effect of P2X7R on the proliferation, migration and invasion of gastric cancer cells through functional experiments. The results showed that P2X7R was highly expressed in gastric cancer tissues and gastric cancer cells.

View Article and Find Full Text PDF

Objective: The RATIONALE-305 trial demonstrated that tislelizumab in combination with chemotherapy regimens was more beneficial than chemotherapy regimens alone in the treatment of patients with advanced gastric cancer or gastroesophageal junction adenocarcinoma (GC/GEJC). This study aimed to evaluate the cost-effectiveness of tislelizumab combination chemotherapy in the treatment of advanced GC/GEJC from the perspective of the Chinese health service system.

Methods: A three-state partition survival model was constructed to evaluate the economics of tislelizumab combined with chemotherapy as the first-line treatment of advanced GC/GEJC.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is highly invasive and metastatic to the lymph nodes. Therefore, it is an urgent priority to distinguish novel biomarkers and molecular mechanisms of lymph node metastasis as the first step to the disease investigation. Long non-coding RNAs (lncRNAs) have widely been explored in cancer tumorigenesis, progression, and invasion.

View Article and Find Full Text PDF

Aldo-keto reductase family 1 member B10 (AKR1B10) is a member of the AKR1B subfamily. It is mainly found in cytoplasm, and it is typically expressed in the stomach and intestines. Given that its expression is low or absent in other tissues, AKR1B10 is a potential diagnostic and therapeutic biomarker for various digestive system diseases.

View Article and Find Full Text PDF

Pan-cancer analysis shows that BCAP31 is a potential prognostic and immunotherapeutic biomarker for multiple cancer types.

Front Immunol

December 2024

Department of Otolaryngology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.

Background: B-cell receptor-associated protein 31 (BCAP31) is a widely expressed transmembrane protein primarily located in the endoplasmic reticulum (ER), including the ER-mitochondria associated membranes. Emerging evidence suggests that BCAP31 may play a role in cancer development and progression, although its specific effects across different cancer types remain incompletely understood.

Methods: The raw data on BCAP31 expression in tumor and adjacent non-tumor (paracancerous) samples were obtained from the Broad Institute Cancer Cell Line Encyclopedia (CCLE) and UCSC databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!