Fabrication of Sustained-Release Dosages Using Powder-Based Three-Dimensional (3D) Printing Technology.

AAPS PharmSciTech

Pharmaceutical Engineering and 3D Printing Labs (PharmE3D), Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, 78705, USA.

Published: November 2022

Three-dimensional (3D)-printed tablets prepared using powder-based printing techniques like selective laser sintering (SLS) typically disintegrate/dissolve and release the drug within a few minutes because of their inherent porous nature and loose structure. The goal of this study was to demonstrate the suitability of SLS 3DP technology for fabricating sustained-release dosages utilizing Kollidon SR (KSR), a matrix-forming excipient composed of polyvinyl acetate and polyvinylpyrrolidone (8:2). A physical mixture (PM), comprising 10:85:5 (% w/w) of acetaminophen (ACH), KSR, and Candurin, was sintered using a benchtop SLS 3D printer equipped with a 2.3-W 455-nm blue visible laser. After optimization of the process parameters and formulation composition, robust 3D-printed tablets were obtained as per the computer-aided design (CAD) model. Advanced solid-state characterizations by powder X-ray diffraction (PXRD) and wide-angle X-ray scattering (WAXS) confirmed that ACH remained in its native crystalline state after sintering. In addition, X-ray micro-computed tomography (micro-CT) studies revealed that the tablets contain a total porosity of 57.7% with an average pore diameter of 24.8 μm. Moreover, SEM images exhibited a morphological representation of the ACH sintered tablets' exterior surface. Furthermore, the KSR matrix 3D-printed tablets showed a sustained-release profile, releasing roughly 90% of the ACH over 12 h as opposed to a burst release from the free drug and PM. Overall, our work shows for the first time that KSR can be used as a suitable polymer matrix to create sustained-release dosage forms utilizing the digitally controllable SLS 3DP technology, showcasing an alternative technique and pharmaceutical excipient.

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12249-022-02461-zDOI Listing

Publication Analysis

Top Keywords

3d-printed tablets
12
sustained-release dosages
8
sls 3dp
8
3dp technology
8
fabrication sustained-release
4
dosages powder-based
4
powder-based three-dimensional
4
three-dimensional printing
4
printing technology
4
technology three-dimensional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!