Understanding how genetic variants influence disease risk and complex traits (variant-to-function) is one of the major challenges in human genetics. Here we present a model-driven framework to leverage human genome-scale metabolic networks to define how genetic variants affect biochemical reaction fluxes across major human tissues, including skeletal muscle, adipose, liver, brain and heart. As proof of concept, we build personalised organ-specific metabolic flux models for 524,615 individuals of the INTERVAL and UK Biobank cohorts and perform a fluxome-wide association study (FWAS) to identify 4312 associations between personalised flux values and the concentration of metabolites in blood. Furthermore, we apply FWAS to identify 92 metabolic fluxes associated with the risk of developing coronary artery disease, many of which are linked to processes previously described to play in role in the disease. Our work demonstrates that genetically personalised metabolic models can elucidate the downstream effects of genetic variants on biochemical reactions involved in common human diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708841PMC
http://dx.doi.org/10.1038/s41467-022-35017-7DOI Listing

Publication Analysis

Top Keywords

genetic variants
12
genetically personalised
8
personalised organ-specific
8
organ-specific metabolic
8
metabolic models
8
fwas identify
8
metabolic
5
models health
4
disease
4
health disease
4

Similar Publications

Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.

View Article and Find Full Text PDF

Genetic association of lipid-lowering drug target genes with pancreatic cancer: a Mendelian randomization study.

Sci Rep

January 2025

Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China.

Previous studies have found that dyslipidemia is a risk factor for pancreatic cancer (PC), and that lipid-lowering drugs may reduce the risk of PC. However, it is not clear whether dyslipidemia causes PC. The Mendelian randomization (MR) study aimed to investigate the causal role of lipid traits in pancreatic cancer and to assess the potential impact of lipid-lowering drug targets on pancreatic cancer.

View Article and Find Full Text PDF

In our research, we performed temporal transcriptomic profiling of host cells infected with Equid alphaherpesvirus 1 (EHV-1) by utilizing direct cDNA sequencing based on nanopore MinION technology. The sequencing reads were harnessed for transcript quantification at various time points. Viral infection-induced differential gene expression was identified through the edgeR package.

View Article and Find Full Text PDF

Single-point mutations are pivotal in molecular zoology, shaping functions and influencing genetic diversity and evolution. Here we study three such genetic variants of a mechano-responsive protein, cadherin-23, that uphold the structural integrity of the protein, but showcase distinct genotypes and phenotypes. The variants exhibit subtle differences in transient intra-domain interactions, which in turn affect the anti-correlated motions among the constituent β-strands.

View Article and Find Full Text PDF

Response to azathioprine treatment in autoimmune hepatitis is dependent on glutathione transferase genotypes.

Dig Liver Dis

January 2025

Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden. Electronic address:

Background: Azathioprine (AZA) is part of the standard treatment for autoimmune hepatitis (AIH). The first step in the complex bioconversion of AZA to active metabolites is mediated by glutathione transferases (GSTs).

Aims: Elucidate the association between GSTM1 and GSTT1 copy number variation (CNV), genetic variation in GSTA2, GSTP1, and inosine-triphosphate-pyrophosphatase, and the response to AZA in AIH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!