Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A catalytic living ring-opening metathesis copolymerization (ROMP) method is described that relies on a degenerative, reversible and regioselective exchange of propagating Fischer-carbenes. All characteristics of a living polymerization such as narrow dispersity, excellent molar mass control and the ability to form block copolymers are achieved by this method. The method allows the use of up to 200 times less ruthenium complex than traditional living ROMP. We demonstrate the synthesis of ROMP-ROMP diblock copolymers, ATRP from a ROMP macro-initiator and living ROMP from a PEG-based macro chain transfer agent. The cost-effective, sustainable and environmentally friendly synthesis of degradable polymers and block copolymers enabled by this strategy will find various applications in biomedicine, materials science, and technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202211842 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!