Aqueous processing of Ni-rich layered oxide cathode materials is a promising approach to simultaneously decrease electrode manufacturing costs, while bringing environmental benefits by substituting the state-of-the-art (often toxic and costly) organic processing solvents. However, an aqueous environment remains challenging due to the high reactivity of Ni-rich layered oxides towards moisture, leading to lithium leaching and Al current collector corrosion because of the resulting high pH value of the aqueous electrode paste. Herein, a facile method was developed to enable aqueous processing of LiNi Co Mn O (NCM811) by the addition of lithium sulfate (Li SO ) during electrode paste dispersion. The aqueously processed electrodes retained 80 % of their initial capacity after 400 cycles in NCM811||graphite full cells, while electrodes processed without the addition of Li SO reached 80 % of their capacity after only 200 cycles. Furthermore, with regard to electrochemical performance, aqueously processed electrodes using carbon-coated Al current collector outperformed reference electrodes based on state-of-the-art production processes involving N-methyl-2-pyrrolidone as processing solvent and fluorinated binders. The positive impact on cycle life by the addition of Li SO stemmed from a formed sulfate coating as well as different surface species, protecting the NCM811 surface against degradation. Results reported herein open a new avenue for the processing of Ni-rich NCM electrodes using more sustainable aqueous routes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10107986PMC
http://dx.doi.org/10.1002/cssc.202202161DOI Listing

Publication Analysis

Top Keywords

aqueous processing
12
processing ni-rich
12
ni-rich layered
12
layered oxide
8
oxide cathode
8
cathode materials
8
addition lithium
8
lithium sulfate
8
current collector
8
electrode paste
8

Similar Publications

Self-assembly of amino acids and short-peptide derivatives attracted significant curiosity worldwide due to their unique self-assembly process and wide variety of applications. Amino acid is considered one of the important synthons in supramolecular chemistry. Self-assembly processes and applications of unfunctionalized native amino acids have been less reported in the literature.

View Article and Find Full Text PDF

Amnesia is a memory disorder marked by the inability to recall or acquire information. Hence, drugs that also target the neurogenesis process constitute a hope to discover a cure against memory disorders. This study is aimed at evaluating the antiamnesic and neurotrophic effects of the aqueous extract of () on in vivo and in vitro models of excitotoxicity.

View Article and Find Full Text PDF

Oxidative stress and microbial growth deteriorate food quality and cause safety risks. Therefore, the present study was investigated to explore the nutritional, sensorial, anti-oxidative and anti-microbial attributes of flaxseed powder (FP) supplemented at 2-8 % (i.e.

View Article and Find Full Text PDF

Antibiotics are emerging environmental contaminants posing critical health risks due to their tendency to concentrate in living things and eventually infiltrate the human body. Sulfamethoxazole (SMZ) is among the commonly detected antibiotics in wastewater requiring effective removal approach. A sustainable, thermally stable and easily separable magnetic sporopollenin-cellulose triacetate (Msp-CTA) was developed via a simple step synthesis for eliminating SMZ from aqueous solution.

View Article and Find Full Text PDF

Multiparticulate drug delivery systems offer advantages in controlled release, dose flexibility, and personalized medicine. Fusion prilling, a process that produces spherical lipid-based microparticles through vibrating nozzles, is gaining interest in the field. This study aims to explore the use of fusion prilling to encapsulate crystallizable water-in-oil emulsions, enabling the incorporation of hydrophilic active pharmaceutical ingredients (APIs) within lipid matrices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!