A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluating the effects of vegetation and land management on runoff control using field plots and machine learning models. | LitMetric

Evaluating the effects of vegetation and land management on runoff control using field plots and machine learning models.

Environ Sci Pollut Res Int

Department of Range and Watershed Management, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, 1144, Guilan, Iran.

Published: March 2023

Excess surface water after heavy rainfalls leads to soil erosion and flash floods, resulting in human and financial losses. Reducing runoff is an essential management tool to protect water and soil resources. This study aimed to evaluate the effects of vegetation and land management methods on runoff control and to provide a model to predict runoff values. Filed plot data and three machine learning (ML) methods, including artificial neural network (ANN), coactive neuro-fuzzy inference system (CANFIS), and extreme gradient boosting (EGB), were used in a test site in the north of Iran. In this regard, plots with various vegetation and land management treatments including bare soil treatment, rangeland cover treatment, forest litter treatment, rangeland litter treatment, tillage treatment in the direction of slope, tillage treatment perpendicular to the slope, and repetition of treatments under forest canopy were constructed on a hillslope. After each rainfall event, the amount of rainfall and corresponding runoff generated in each plot was recorded. Three ML models (ANN, CANFIS, and EGB) were used to establish relationships between amounts of recorded runoff and its controlling factors (rainfall, antecedent soil moisture (A.M.C), shrub canopy percentage and height, tree canopy percentage and height, soil texture (clay, silt, and sand percent), slope degree, leaf litter percentage of soil, and tillage interval). These data were normalized, randomized, and divided into training and testing subsets. Results showed that the ANN performed better than the other two models in predicting runoff in training (R = 0.98; MSE = 0.004) and the test stages (R = 0.90; MSE = 0.95). Statistical analysis and sensitivity analysis of inputs factors showed that rainfall, rangeland cover, and A.M.C are the three most important factors controlling runoff generation. The adopted method can be used to predict the effect of different vegetation and land management scenarios on runoff generation in the study area and the areas with similar settings elsewhere.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-24347-0DOI Listing

Publication Analysis

Top Keywords

vegetation land
16
land management
16
runoff
9
effects vegetation
8
runoff control
8
machine learning
8
treatment rangeland
8
rangeland cover
8
litter treatment
8
tillage treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!