Coastal sediments in the Mong Cai area were collected and analyzed for grain size, heavy metals, total organic carbon, and isotopes (Pb, Ra, δN, δC) to assess sediment quality. The most common sediments were fine sand in surface sediment, very fine sand in core C1, and very coarse and coarse silt in core C2. The total organic carbon was highest in C2 next to the surface and lowest in C1, with content levels of 1.81%, 0.40%, and 0.31%, respectively. The chronology in C1 was 1877-2019 (142 years, 0-5 0 cm), with an average sedimentation rate of 0.71 cm/year. In C2, the chronology was 1944-2019 (75 years, 0-14 cm), with an average sedimentation rate of 0.27 cm/year. These δC and δN in the sediment reflect the source of the organic matter mix from the marine and terrigenous sediments. All studied heavy metals were lower than the ISQGs, with the exception of As in C1 and C2, which were higher. C1 showed a decline in As over time, while C2 As levels increased between 1996 and 2019. In terms of heavy metal pollution indexes, the geoaccumulation index (Igeo) showed that C1 and C2 were unpolluted to moderately polluted with As, with Li and Pb in C2; the enrichment factor (EF) was moderately enriched with As; the contamination factor (CF) was moderately contaminated (Pb, Cd, Fe, Mo, and Li) in C2 and C1 (Cd, As, Li) and considerably contaminated (As) in C2. The risk factor (ER) of As showed a moderate potential ecological risk in C2. The degree of contamination (CD) ranged from moderate to considerable (C1, C2), and the ecological risk (RI) was low. Although CD ranged from moderate (C1) to considerable (C2), most contamination was concentrated at the bottom of the cores. RI was low. The Mong Cai sediment quality does not currently affect the coastal area's ecosystem and fauna.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-022-10779-1 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital; Shandong Provincial Key Laboratory of Medicine in Microvascular Ageing; Laboratory of Future Industry of Gene Editing in Vascular Endothelial Cells of Universities in Shandong Province, Jinan, China.
Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.
View Article and Find Full Text PDFJ Nephrol
January 2025
Laboratory of Renal Toxicopathology & Medicine, P.G. Department of Environmental Sciences, Sambalpur University, Burla, Odisha, 768019, India.
Background: The present community-based study assessed the prevalence of chronic kidney disease (CKD)/chronic kidney disease of unknown origin (CKDu) as well as anemia in some intense agricultural zones under Hirakud Command Area and evaluated their association with pesticides and heavy metal exposure.
Methods: Random cluster sampling method was used to assess the prevalence of CKD and anemia. Hematological analysis was carried out using autoanalyzer.
Pak J Pharm Sci
January 2025
Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China.
Berberine (BBR), an isoquinoline alkaloid abundant in Coptis chinensis, exhibits anti-tumor and hypoglycemic properties. The regulation of tumor cell homeostasis and metabolism is greatly influenced by Hypoxia-inducible factor-1α (HIF-1α). This research aims to elucidate whether BBR inhibits the progression of hepatocellular carcinoma (HCC) by modulating HIF-1α expression.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China.
As an important element of the human body, iron participates in numerous physiological and biochemical reactions. In the past decade, ferroptosis (a form of iron-dependent regulated cell death) has been reported to contribute to the pathogenesis and progression of various diseases. The stability of iron in cardiomyocytes is crucial for the maintenance of normal physiological cardiac activity.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology-Chennai campus, Chennai, 600127, India.
Nickel complexes are a potential candidate for antibacterial and antifungal activity. A new Ni (II) complex, bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato)nickel (II) (2), was synthesised by reacting, bis(3-methoxy-salicylaldehyde)nickel (II) (1) with isobutylamine. It was characterised by single crystal X-ray diffraction (ScXRD), UV-Vis, NMR, IR, mass spectrometry, and thermogravimetry (TG) to study its structure and physico-chemical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!