Multicellular tumor spheroids are the most well-characterized organotypic models for cancer research. Generally, scaffold-based and scaffold-free techniques are widely used for culturing spheroids. In scaffold-free techniques, the hanging drop (HD) method is a more versatile technique, but the retrieval of three-dimensional (3D) cell spheroids in the hanging drop method is usually labor-intensive. We developed oil-coated polystyrene nanofiber-based reusable slippery surfaces for the generation and easy retrieval of 3D spheroids. The developed slippery surfaces facilitated the rolling and gliding of the cell medium drops as well as holding the hydrophilic drops for more than 72 h by the virtue of surface tension as in the hanging drop method. In this study, polystyrene nanofibers were developed by the facile technique of electrospinning and the morphological evaluation was performed by scanning electron microscopy (SEM) and cryo-FESEM. We modeled the retrieval process of 3D spheroids with the ingredients of 3D spheroid generation, such as water, cell culture media, collagen, and hyaluronic acid solution, demonstrating the faster and easy retrieval of 3D spheroids within a few seconds. We created MCF-7 spheroids as a proof of concept with a developed slippery surface. 3D spheroids were characterized for their size, homogeneity, reactive oxygen species, proliferative marker (Ki-67), and hypoxic inducing factor 1ά (HIF-1ά). These 3D tumor spheroids were further tested for evaluating the cellular toxicity of the doxorubicin drug. Hence, the proposed slippery surfaces demonstrated the potential alternative of culturing 3D tumor spheroids with an easy retrieval process with intact 3D spheroids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.2c00620 | DOI Listing |
Sci Adv
January 2025
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
A recurring challenge in extracting energy from ambient motion is that devices must maintain high harvesting efficiency and a positive user experience when the interface is undergoing dynamic compression. We show that small amphiphiles can be used to tune friction, haptics, and triboelectric properties by assembling into specific conformations on the surfaces of materials. Molecules that form multiple slip planes under pressure, especially through π-π stacking, produce 80 to 90% lower friction than those that form disordered mesostructures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
Inspired by the adhesion differences on the surfaces of fresh and dried rose petals, a rose bionic self-cleaning fog collector (RBSC) was designed and prepared to realize a self-driven fog harvesting function. The droplet detachment iteration rate was revealed by the regulating mechanism of the surface adhesion force of the RBSC and the influence of bionic texture parameters, as demonstrated through the fog harvesting experiment and droplet detachment failure analysis. Through the surface adhesion force regulation, the probability of droplet dissipation with the airflow is reduced by increasing the falling droplets' mass, and the single surface fog capture efficiency is up to 740 mg cm h.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India.
Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g.
View Article and Find Full Text PDFISA Trans
December 2024
Robotic Research Laboratory, Centre of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran.
In this paper, trajectory tracking control as the pursuit of a specific target by wheel-legged mobile robots (WLMRs) in an environment with the presence of obstacles is presented. These types of robots are designed to navigate different paths such as slippery trajectories, paths with obstacles, and other challenging paths. In addition, the robot can move its legs in different surface conditions and operate more flexibly with the help of wheels attached to the legs.
View Article and Find Full Text PDFSmall
January 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!