A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transcriptional Potential Determines the Adaptability of Escherichia coli Strains with Different Fitness Backgrounds. | LitMetric

Transcriptional Potential Determines the Adaptability of Escherichia coli Strains with Different Fitness Backgrounds.

Microbiol Spectr

Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei Universitygrid.15444.30, Seoul, Republic of Korea.

Published: December 2022

Adaptation through the fitness landscape may be influenced by the gene pool or expression network. However, genetic factors that determine the contribution of beneficial mutations during adaptive evolution are poorly understood. In this study, we experimentally evolved wild-type Escherichia coli K-12 MG1655 and its isogenic derivative that has two additional replication origins and shows higher background fitness. During the short time of experimental evolution, the fitness gains of the two E. coli strains with different fitness backgrounds converged. Populational genome sequencing revealed various mutations with different allele frequencies in evolved populations. Several mutations occurred in genes affecting transcriptional regulation (e.g., RNA polymerase subunit, RNase, ppGpp synthetase, and transcription termination/antitermination factor genes). When we introduced mutations into the ancestral E. coli strains, beneficial effects tended to be lower in the ancestor with higher initial fitness. Replication rate analysis showed that the various replication indices do not correlate with the growth rate. Transcriptome profiling showed that gene expression and gene ontology are markedly enriched in populations with lower background fitness after experimental evolution. Further, the degree of transcriptional change was proportional to the fitness gain. Thus, the evolutionary trajectories of bacteria with different fitness backgrounds can be complex and counterintuitive. Notably, transcriptional change is a major contributor to adaptability. Predicting the adaptive potential of bacterial populations can be difficult due to their complexity and dynamic environmental conditions. Also, epistatic interaction between mutations affects the adaptive trajectory. Nevertheless, next-generation sequencing sheds light on understanding evolutionary dynamics through high-throughput genome and transcriptome information. Experimental evolution of two E. coli strains with different background fitness showed that the trajectories of fitness gain, which slowed down during the later stages of evolution, became convergent. This suggests that the adaptability of bacteria can be counterintuitive and that predicting the evolutionary path of bacteria can be difficult even in a constant environment. In addition, transcriptional change is associated with fitness gain during the evolutionary process. Thus, the adaptability of cells depends on their intrinsic genetic capacity for a given evolutionary period. This should be considered when genetically engineered bacteria are optimized through adaptive evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769844PMC
http://dx.doi.org/10.1128/spectrum.02528-22DOI Listing

Publication Analysis

Top Keywords

coli strains
16
fitness
12
fitness backgrounds
12
background fitness
12
experimental evolution
12
transcriptional change
12
fitness gain
12
escherichia coli
8
strains fitness
8
mutations adaptive
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!