Monocytes play an important role in the control of microbial infection, but monocyte biology during chronic hepatitis B virus (HBV) infection (CHI) remains inadequately studied. We investigated the frequency, phenotype, and functions of monocyte subsets in different phases of CHI, namely, immune tolerance (IT), hepatitis B early antigen (HBeAg)-positive/HBeAg-negative chronic hepatitis B (EP-/EN-CHB, respectively), and inactive carrier (IC), identified factors responsible for their functional alterations, and determined the impact of antiviral therapy on these cells. Flow cytometric analysis indicated that HLA-DR CD14 CD16 classical monocytes were significantly reduced while HLA-DR CD14 CD16 intermediate and HLA-DR CD14 CD16 nonclassical monocytes were expanded in IT and EP-/EN-CHB compared with those in IC and healthy controls (HC). In comparison to IC/HC, monocytes in IT and CHB exhibited diminished expression of Toll-like receptor 2 (TLR-2)/TLR-4/TLR-9 and cytokines interleukin-12 (IL-12)/tumor necrosis factor alpha (TNF-α)/IL-6 but produced higher levels of IL-10/transforming growth factor β (TGF-β). Further, monocytes in CHB/IT showed impaired phagocytosis and oxidative response relative to those in IC/HC. assays indicated that high titers of hepatitis B surface antigen (HBsAg) present in IT/CHB and of IL-4 in CHB triggered the functional defects in monocytes via induction of β-catenin. Additionally, monocyte-derived M1 macrophages of CHB/IT produced fewer proinflammatory and more anti-inflammatory cytokines than those of IC/HC, while in CHB/IT, the monocytes skewed the differentiation of CD4 T cells more toward regulatory T cells and a Th2 phenotype. Moreover, monocytes in CHB and IT overexpressed chemokine receptor CCR2, which coincided with increased intrahepatic accumulation of β-catenin CD14 cells. One year of tenofovir therapy failed to normalize monocyte functions or reduce serum HBsAg/IL-4 levels. Taken together, monocytes are functionally perturbed mostly in IT and EP-/EN-CHB phases. Targeting intramonocytic β-catenin or reducing HBsAg/IL-4 levels might restore monocyte function and facilitate viral clearance. Chronic HBV infection (CHI) is a major cause of end-stage liver disease for which pharmacological treatments currently available are inadequate. Chronically HBV-infected patients fail to mount an efficient immune response to the virus, impeding viral clearance and recovery from hepatitis. Monocytes represent a central part of innate immunity, but a comprehensive understanding on monocyte involvement in CHI is still lacking. We here report a multitude of defects in monocytes in chronically HBV-infected patients that include alteration in subset distribution, Toll-like receptor expression, cytokine production, phagocytic activity, oxidative response, migratory ability, polarization of monocyte-derived macrophages, and monocyte-T-cell interaction. We demonstrated that high levels of hepatitis B virus surface antigen and IL-4 potentiate these defects in monocytes via β-catenin induction while therapy with the nucleotide analog tenofovir fails to restore monocyte function. Our findings add to the continuing effort to devise new immunotherapeutic strategies that could reverse the immune defects in CHI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769680 | PMC |
http://dx.doi.org/10.1128/spectrum.01939-22 | DOI Listing |
Alzheimers Dement
December 2024
Eli Lilly and Company, Indianapolis, IN, USA.
Background: Anti-amyloid-β (Aβ) immunotherapy trials have shown amyloid-related imaging abnormalities (ARIA) as the most common and serious adverse events linked to pathological changes in cerebral vasculature. Nevertheless, the mechanisms underlying how amyloid immunotherapy triggers vascular damage, increases vascular permeability, and results in microhemorrhages remains unclear. Notably, activation of perivascular macrophages and infiltration of peripheral immune cells have been implicated in regulating cerebrovascular damage.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Pacific Brain Health Center, Pacific Neuroscience Institute Foundation, Santa Monica, CA, USA.
Background: Brain accumulation of amyloid-ß (Aß) in plaques and neurons is the cause of AD neuropathology that is opposed by autologous monocyte/macrophages (MMs) in health but this defense fails in AD.
Method: RNAseq, immunochemistry of the brain, immunofluorescence, and confocal microscopy of macrophages.
Result: In the AD brain, MMs shuttle Aß from parenchyma to vessels, which develop vasculitis, causing amyloid-related imaging abnormalities (ARIAs).
Alzheimers Dement
December 2024
The University of British Columbia, Vancouver, BC, Canada.
Background: An imbalance between the production and clearance of amyloid beta (Aß) has emerged as a major cause of sporadic Alzheimer's disease (AD). Retinal wholemount studies can identify cell-specific involvement in Aß clearance mechanisms which cannot be accomplished in the brain ex vivo.
Methods: Eye cross-sections of double transgenic (Tg, APP-PS1) and non-carrier sibling female mice (n = 16, 4 per group) at 3- and 9- month ages were probed with antibodies 6E10 (Aβ1-16 amino-acid residues, soluble and insoluble species), ionized calcium-binding adapter molecule 1 (IBA1, microglia/macrophage), glial fibrillary acidic protein (GFAP, astrocytes), glutamine synthetase (GS, Müller cells) and aquaporin-4 (AQP4, membrane water channel) using immunofluorescence.
Alzheimers Dement
December 2024
Department of Neurology, Columbia University, New York, NY, USA.
Background: Lipid dysregulation is a known feature of Alzheimer's Disease. Importantly, alterations in lipids pathways affect immune responses in cells like microglia, which have been shown to accumulate cholesterol in both aging and neurodegeneration. Recently, the presence of TDP-43 inclusions has been linked to increased severity of cognitive impairment in AD patients.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kentucky, Lexington, KY, USA.
Background: Aging microglia accumulate lipid droplets (LDs), secrete pro-inflammatory cytokines, and are defective in phagocytosis. The E4 allele of Apolipoprotein E (APOE) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD) and is associated with increased neuroinflammation and LD accumulation. Here, we aimed to determine if the effects of aging and the E4 allele are synergistic in causing the accumulation of LDs seen in LOAD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!