Retinoblastoma generally affects children and causes permanent vision failure or even death. MicroRNAs (miRs) have recently gained much attention during recent years. The miR-708 acts as a tumor suppressor in several human cancers, but the former has not been functionally characterized in human retinoblastoma. The present study was designed to investigate the role of miR-708 in human retinoblastoma. The results showed that miR-708 is significantly (P<0.05) downregulated in retinoblastoma cell lines. MiR-708 overexpression significantly (P<0.05) inhibited retinoblastoma cell growth and proliferation by inducing apoptosis. Furthermore, retinoblastoma cells overexpressing miR-708 exhibited a markedly lower migratory rate and invasiveness compared to negative control cells. The bioinformatics and dual luciferase assay revealed a RAS oncogene family protein, RAP2B, which acts as the regulatory target and functional mediator of the molecular role of miR-708 in retinoblastoma. Together, the present study revealed the tumor suppressor role of miR-708 and pointed to the therapeutic implications of miR-708/RAP2B in the treatment of retinoblastoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.18388/abp.2020_5872 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!